This is a reproduction of a library book that was digitized by Google as part of an ongoing effort to preserve the information in books and make it universally accessible.

Google books

https://books.google.com

HOW TO
ARVIEST
ICE

ChiffordAllood bor

anss ${ }^{\top} 621.585$ sookgG36

How to Marvest IIce

Hiffordullood bo．

Earablahed 1827

BOSTON，MASS．

 OHIOAGO，ILI

Corybant 1912
av
GIFFORD-WOOD CO.

FOREWORD.

THREE quarters of a century spans the commercial development of the natural ice industry. Once an article of luxury and used in small quantities it is now one of the most important of every day necessities. In its annual harvest and distribution it requires an investment of millions of dollars and the services of hundreds of thousands of men.

Extending over that entire period we have been affiliated with the iceman in all parts of the country. In no small degree his hardship and failures, as well as his prosperity, have been shared by us. With such a common interest between ns, ,sp:opperation, has naturally resulted and wheve tripioved tools'and aptaratus could
 increasing the productiveacse pifhis; labor.

On account of this lamiliarity with the methods employed in different parts of the country we each year receive many letters asking for advice. Some of these inquires, as may be expected, are from those unacquainted with the ice business. To furnish the information desired in full and yet concise form, this pamphlet was first issued over thirty years ago. The present enlarged edition indicates some of the many improvements which have taken place during that time.

$$
\because 0,10
$$

As the operations vary so greatly in different sections, only a deneral view of the subjects is possible within the limits of these pages. It is hoped, however, that the sugestions offered may be found of interest to the reader, helping him to some degree at least in performing the work with system and economy. Where more extended advice is desired on any detail of harvesting, we are very glad to hear from our customers and thus be able to place our experience more directly at their service.

The numbers, used in this book, in naming Ice Tools, are those to be found in our Geveral Catalog of Ice Handling Machinery and Tools.

The Natural Ice Businens.

The conditions necessary for the formation of natural ice are most widely distributed. As these requisites are chiefly the gift of Nature, requiring the expense of but little preliminary development, the cost of the ice in its native state is almost nothing. When harvested, stored and distribated by the use of approved methods and appliances, it therefore has an immense advantage over the ice produced by mechanical refrigeration.

Fig. E. Hield Scent.
Competition with manufactured ioe has been most beneficial for the natural ioe industry. Greater effort is now put forth to harvest the parest ice obtainable, to prevent any contamination on its way to the consumer, and to market only that which is elean in appearance and regalar in form. By giving attention to these details, the most exacting requirements of the publie are met, and the natural ice basiness in any community is placed on the firmest foundation possible.

Investigations by the most competent scientists have done much to incresse consdence in the purity of natural ice. It has been proven most conclusively that holding foe in storage for a number of months destroys all germs which may have been present on the field.

Simple as the ice business may seem, it is composed of a large namber of details, and economy in obtaining a crop requires eareful attention to each. The importance of suitable facilities for preparing

Fis. 3. Elevator Convegor Apron.
and cutting the field and for quickly and cbeaply housing the ice are so well appreciated that no arguments in their favor are becessary.

Fig. 3 Field Siceraf.

Time is often the factor which determines whether a crop shall be secured or lost. A breaking up of the field may leave the poorly. equipped harvester with one-half or one-fourth a crop, while his more up-to-date competitor is fully prepared for another season's trade.

The housing of nothing but marketable lee is now acoepted by the most progressive harvesters as absolutely essential to economy. A eake of ice on the field is practically raw material with but little value. When placed in the house, its worth has been increased as a result of the labor expended upon it; and whes on the delivery wagon ready for the customer, it is more valuable still. As the dealer's interest is best served by delivering nothing but regularly-shaped cakes of good ice, the elimination of all defective or unsalable pieces can be done at the smallest actual cost before it reaches the interior of the house. While this is better than to remove the waste later, the most economical plan is to so conduct the field operations that the number of defective cakes is reduced to a minimum. The saving due to such a procedare will be very evident, since the creation of any waste thaterial whatever represents a certain amount of labor which is a total loss.

Fig. 4 Field Scent.
The ice should be of good quality and of suitable depth to allow for surfnce dressing, thus leaving it the most desirable thickness for cutting to sapply the trade. Careful attention to the grooving and calking makes the barring off easy, and the regular cakes thas obtained are more éssily handled, pack better in the house, and cut up with small waste when delivered to the customer.

Ice from different parts of the field may vary several inches in thickness, and if the cutting extends over a period of two or three weeks the ice will often make that amount during the harvest. The nse of a planer on the ineline removes all surface impurities, rednoes the cakes to a uniform size, makes the storing easier, greatly reduces the amount of waste loe going into the bouse, and cuts down the expense of removing the ioe tremendonsly.

One harvester following these lines may house 5,000 tons of ice a day, nearly all of which is salable and first-class, while another harvester giving little attention to the details will put op one-half as tauch with the same daily expense of operation, his crop including a large amount of ice which is either of an inferior quality or absolute waste. On account of the importance of doing esch part of the work is the most economical manner, the various harvesting operations are described in the following chapters.

Size and Location of House.

From his knowledge of the market to be supplied, the lasrvester is usually able to estimate how much ice can be sold to advantage each scason. The addition to this amount of 20% to 40%, as the conditions tany marrant, to cover the slirinkage, will indicate the house capacity

Fig. 5. Hoving a Small Crop
necessary for a season's requirements. A cubie foot of ice weighs about 58 pounds, or measures nearly 35 cubie feet to the ton. The latter figure, bowever, cannot be used in calculating the marketable tomage of a bouse, on account of the large amount of waste spasee existing between the cakes as they should be and are usually stored. The espacity of most boases is now estimated on a basis of one ton for every 45 cubic feet of house volume, measured inside the rooms, as a fair measurement for buyer and seller, although a few harvesters do not make so much allowance.

In selecting a suitable location, the demands of an increasing business shoald be thoroughly considered and the larger eapacity which this may necessitate. The original building should be so placed that future extensions are possible without coatly grading or expensive additions to the elevating apparatus. Too often the former receives proper attention, but not the latter, and an increase of several
new rooms requires either much additional machinery or getting the foe into these rooms under most anfavorable conditions.

Convenience in taling the iee out in the summer is an important factor affecting ceonomy. The house floor is geserally located at, or near, the ground level. With the wagon or car-losding platform three or four feet above this level, as is the common arrangement, the last few layers taken out must be pulled up a chute by hand or by chain conveyor, resulting, of course, in slower londing and additionsl expense. If sot too expensive, houses should be built with their floors level with the loading platforms, with the latter the neoessary distance nbove track or rondway for easy loading.

House Construction.

Wood is at present the most commonly used material for ice-house cohstruction. Concrete has been employed to some extent with favorable results, and the almost total elimination of fire risk is such a

Mig. 6. Starting Chisel. No. 4is.
strong recommendation for this type of house that its popularity will constantly increase.

Fig. 7. Tapping Bar, No. 4sa.
Some wooden houses are constructed with single studding others with a donble row of posts - the air space, packing and other insulating featares varying as well. The line to be followed in any given

Fig. 8. Scraping Scent.
ease depends very largely upon the lotal conditions. The construction of an expensive house, warranted in one looality, might be the poorest kind of an investment in another. We have a large assortmest of working drawings for houses of all sizes from the smallest to the largest, and these are included free of clarge with the elevator drawings.

Size of Ice Cakes,

The size of cakes to be harvested should be selected to give the least amount of waste possible when cutting up for the trade. It is also desirable to house a cake of standard dimensions requiring no special tools or machinery. The prevailing sizes in the United States are $22 \times 32,20$ or $22 \times 28,22 \times 42$ or 44 , and 44×44, the latter size being cut only in Eastern Massachusetts and New Hampshire, A common size with the smaller harvesters is 29×22 inches, while some find even smaller cakes more desirable.

The foregoing points are preliminary to the work of haryesting, which may be divided into three parts, viz. field work; boisting into the hoase, and packing and removing; esch of which will be briefly described in the following pages.

Size of Field.

The area laid out should be large enough, if possible, to fill the house with a single cutting. The general practice is to allow one acre of fleld with a thickness of 12 inches for each 1,000 tons of ice to be cut. This is under favorable conditions. It is well to make the field somewhat larger, to provide for soft weather, and considerable additional area should be added for windrows if a large surface is to be sorsped.

Fis. 3. Use of the Bosten Seraper.

Wetting Down.

It is seldom that a field of ice freezes to the desired thickness without having one or more falls of snow upon it, and as a result the harvester is nearly always called upon to handle this snow in one way or another before marking out the field. The first snow often comes when the ioe is too thin to bear scraping, asd if the weight of the snow is insufficient to sink the ice, the custom of tapping, or wetting down, is now very generally practiced. This should be done when all the indications are favorable for freering the moistened ssow solid. If the top only of the snow water freezes, forming a crust, and more snow should fall, there would be a space of water underneath the dry snow which would not readily freeze, and scraping would be impossible. A windy day should not be chosen on account of the drifting.

It is well known that a thick layer of snow on a feld greatly retards the formation of the ice. Converting this into snow ice assists in making and also prevents dust and other impurities from being melted into the surface during a spell of soft weather. Cinders pesetrate sap ice much less readily than solid ice.

Fig. 10. Eight-foot Bottos Scraper, Na. als.
Flooding the frat two or three snows is a good protection againat honeyoombing by warm weather, and a coating of snow ice will also make the ice tougher and less liable to breakage through all of the subseguent operations.

The best reason for tapping where ice is handled by an incline elevator is the coosomy gained. An Elevator Planer will easily remove any amount of sap iee, and it has been proven by harvesters that the coat of wetting down and disposing of the chips made by the Elevator Planer is not more than 5% of the expense of scraping. This will be referred to in later chapters.

To wet down, a gang of men, each provided with a narrow-bladed chisel and spaced at regular intervals in a row, proceeds seross the field punching holes in the ice as the men advance. Judgment should be used in the spacing of these boles, the distance apart varying from six to ten feet, as the conditions may warrant; the number and size of holes being such as to insure a thorough saturation of the snow.

A number of different tools are used for this work. If a small hole is desired on thin ioe, the Bing Habdle Needle Bar, No. 484 see Fig. 51 - is the best. For thicker ice, a chisel-shaped tool is required. Some harvesters use the curved-bladed Starting Chisel, No. 465, illustrated in Fig. 6, although a better tool is the Ring Handle Tapping Bar, No. 482, sbows in Fig. 7, which is made especially for this purpose, and cuts a smaller hole.

Scraping.

The operation of scraping is so costly that it should only be done when it is not feasible to wet down. The use of a horse scraper is a necessity when the ice is thick enough and the fall of snow too light for wetting down to advantage. If the ice has not reached the desired thickness, a light snow should be removed by seraper. Under these conditions it is the cheapest metbod available, and the field will then ice much more rapidly than while protected by a snow blanket.

If the field is small all snow should be seraped to the shore. Where an extensive area is to be eleared, this is, of course, imprastioable, owing to the distance that it would be necessary to draw the

Fic. IL Scraping Sotne
loads. The fleld is then divided off into sections, the snow from each being piled in damps or windrows between them. When this plan is followed, greater acreage must be allowed as considerable space is covered by the dumps. These are generaily run at right angles to the main eanal through which the ioe is floated to the elevator. As the weight of the snow in these piles is usaally great enough to cause the ice underneath to settle below the general level of the field, a plow
groove is sometimes made along the side of the windrows, which prevents flooding the cutting area. The dumps are located some 300 feet apart, leaving a good 250 -foot field between them.

The scraper most extensively used is the "dust pan," or Boston Scraper, No. 284-5. Its extreme simplicity makes it inexpensive, yet effeotive, and very easy to operate. One of these serapers is shown in action in Fig. 9, the implement only being illustrated in Fig. 10. It is made in two widths, No. 284 being 6 -foot and No, 2858 -foot. Althongh the 6 -foot size is nominally a one-horse scraper, two borses should be used if the snows are beavy.

Fig, ra. Sis-foot Clearing-off Scraper, No, aga,
The Clearing-off Scraper - see Fig. 12-is made in three widths, 6 -foot, No. 292; 7-foot, No. 293, and 8-foot, No. 294 . It is used for removing light snows, plow chips, or for collecting the small furrows sometimes left by the large soraper.

Field Cultivating.

If the means of carrying the ice from the field to the house does not permit the use of the Incline Plaser, field ealtivating is the only method of removing snow ice or other objectionable material from the top before packing. There are eases, however, when field cultivating is to be recommended, even though the ice may later be cleaned up on

Fig. 13 Ordinary Pield Planer, No. 279.
the elevator ineline. Very frequently the weather is not severe enough to make iee rapidly. At such times the removal of a cutting of snow ice does much toward securing the desired thickness.

Another schemse is often practiced to secure an earlier harvest. The entire feld is marked out with grooves rumning in one direction
as if the cutting operations were to follow. These grooves, generally made to a depth of three inches, allow the cold air to penetrate the body of the ice with a noticeable increase in its thirkness. If the water of the pond or lake is naturally still, the motion given it by working the field also helps in the freezing.

Cultivatin』.

In the ase of the Ordinary Field Planer, Na. 979, sbown in Fig. 13 , the field is lsid out with the marker; the spacing of the grooves being an inch or so less than the width of the planer, or at least no wider than the planer. This is an inexpensive article and is very largely nsed by the smaller harvesters.

Nig. 14. Perfection Field Planer, No. apa.
The Perfection Field Plaser, No. 270, illustrated in Fig. 14, is a larger and much more efficient tool. With it no preliminary grooving is neoessary, and a cut forty inches in width many be taken. With two

Fig. is. Une of Field Cultivator.
good horses on the pole three inches of ive may be removed, a lesser amount being obtained when so desired by means of the gauge levers on both sides. The chips are run into a farrow by the scraper attachment, shown in Fig. 14, and may afterward be removed from the fleld in the same manser as sbow. The ase of the Field Cultivator is illas. trated in Fig. 15.

Measurind Thickness.

This should be done at frequent intervals so that the harvester is at all times familiar with the conditions in any part of the Beld. The

Fig. i6. Measuring Rod, No. sta,
rapidity with which ice makes varies considerably in different portions of the field. The tools used are the Ice Auger, No. 510, and the Measuring Rod, No. 512, shown in Figs. 16 and 17.

Fig. 17. Ice Anger, Na sta.
As the thickness of the loe approaches the desired amount, the next step is -

Lining out the Field.

To run the first line through the proposed feld a stake is placed at each end as a guide. A long plank, tested as a "straight edge," is pat in line with the stakes and the catting tool run along its side, after which the plank is pashed forward and the groove extended. The best tool for this work is the 6 -inch Hand Plow, No. 409 , shown in Fig. 18. Drawing the first line is well illustrated in Fig. 19, and that the groove may properly serve as a guide for the teeth of the Horse Marker it should be $1 / 4$ inch to $1 / 2$ inch in depth. Some simply stretch a long line and run the Hand Plow just clear of it.

Fig. 14. Hand Plow, 6-iech, No. 402
The Line Marker, No. 500, shows in Fig. 20, is used as a substitute for the Hand Plow for small operations.

In laying out the cross lines care shoald be taken to run the first at right angles to the groove already made. A large woolen square should be used and will avoid marking out the diamond-shaped cakes

Fic. 19. Use of Hand Plow.
sometimes resulting from careless methods. Such a square can be easily made as follows: Attach two 10 -foot boards with a single nail bear one end of each; mark off a distance of eight feet on the edge of

Fig. ad. Line Marker, Nas. goo.
one board and six feet on the edge of the other; then place a third board, serving as a " stay lath," diagonally across the two, adjusting the latter until the two marks are diagonally ten feet apart in a straight line. The boards may then be nailed together solidly to form the desired right angle. Such a square is shown in the backgroand of Fig. 19.

Marking Ont.

After " lining oat the field," the marking and plowing is next to be done. Whether the operations are to be on the largest scale, requiring several sets of Markers and Plows, or on a scale bot as large, requiring one Marker only and one or more Plows; or small enough to be done by a combination Marker and Plow called a Swing Guide Plow; the procedure following the lining out is the same in all cases.

The teeth of the Marker or the Plow to be used in marking out are ran in the shallow groove made by the Hand Plow or the Line Marker, and the trip is made across the field either without the Guide attached, or with the Guide running loosely on the surface of the ice with its handle thrown out of notch. In this manner the firat groove 21/2 or 3 inches deep is obtained. The first eross-groove is made in the same manner, and these two grooves form the basis of the subsequent marking out.

The Suing Guide, whether attached to the Marker or to a Plow, is a gange, or spacer, for obtaining uniformity in the distance between the grooves. If the cakes are to be square, as 44×44 inches, or 22×22 inches, the Guide is made for one width only; but if longer in one direetion than in the other, as 22×32 inches, or 22×28 inches, either two separate guides are used, or a guide that is adjustable for both midths. Two separate guides are naturally more rigid than an Adjastable Guide; but the latter is certainly very convenient and is, therefore, the more popular.

Fig. az. Patent Perfection Marker, No. 39 a .
In making the next parallel line, the Swing Guide is placed in the groove first made, asd the teeth cut a new groove. At the end of the line the Guide is swung to the opposite side by its handle and the tnarking out is continued in the same manner. In making each eat with the marking-out implement, particular care should be taken to hold it in a vertical position, as otherwise the groove is started on an angle and will be so continued by the following trips, resulting in

Fig. 23. Four-incl Marker with Swing Guide No. 3Ss-
ill-shaped cakes. Fig. 22 illustrates the Solid-tooth Marker with 22 -inch Swing Guide attacbed, No, 355, and Fig. 21 the style we eall the Perfection Marker, which is fitted with inserted teeth, by the use of which the depth of the Marker is not reduced by filing. This latter feature will be described more fully under paragraph " Perfection Markers and Plows."

Plowind Down.

For largest operations, one or more complete sets of grooving implements is a necessity. Each set should include one or two Markers for the first euts, Plows with ibereasing depth depending upon the thickest ice which can be anticipated. The deepest tool should
be able to cut fully two-thirds the thicksess of the bee without bringing the Plow-back slown to the groove. The importance of deep plowing is fally recognized by the experienoed liarvester, as it is one of the first requisites in obtaining regular cakes: otherwise, in barring off,

Fic is Six-inch \%-tooth Piow, No, 371
the seams may break unevenly, and thus probluee eakes having " lips " or "四langes."

If, for instance, the iee is 12 to 14 inclues thjek, enelı set of machines employed should contain, besides its one or two Markers, a 6-ineh

Fig. 4. Eightinch Patest Perfection Plow, E-tosth, No. 33 k
9tooth Plow, No. 337 or No. 371 , the No. 371 is slown in Fig. $23 ;$ un Sineh 8-tooth Plow, No. 338 or No. 374, see Fig. 24 for 338 and Fig. 25 for No. 374, and a 10-inch 6-tooth Plow, No. 379 or No. 377, Fig. 96 illustrates Na. 377 . For iee 15 inches thick, mal to each set a 12 -ineh

Fig. 25. Eightinch Plow, 8-sovth. No. 334

5-tooth Plow, No. 340 or No. 379, No. 379 is shown in Fig. 27. Fourteeninch and 16 -inch Plows, No. 381 and No. 382, are used for still thicker ice, and we also make an 18 -inch, No. 383 .

A view on the Feld in which a good number of these tools is in use is given in Fig. 28.

Market teeth are gauged to ent a width of groove of it of an inch; the teeth of 6 -ibeh, 8 -inch, and 10 -inch. Plows are each slightly narrower, and on a 12 inch Plow the width is bat if of an inch. Plows must, therefore, always be run in the order of their depths.

Fig. as. Ten-inch Plaw, 6-tooth, Na. 377.
The feed given to ice-plow teeth is such that each tooth makes a cut of $1 / 4$ inch. Thus, one trip with an 11 -tootbed Marker will cut a groove 21/2 or 3 inches deep; a 9 -toothed Plow, 21/4 inches at each trip; an 8 -toothed Plow, 2 inctes, ete.

Perfection Markers and Plows.

A style of Markers and Plows, very popular with many advanced harvesters, is the Patent Perfection, or inserted tooth variety, shown by Figs 21 and 24 . This line is made in all sizes from Marker to 12.inch Plow. Owing to its construction, this type is somewhat more expensive than the solid tooth kind, but its advantages more than

Nig. a7. Twelve-lach Maw, 5 -tooth, Na. 378
outweigh the extra cost with the meehanically inclined operator. Each tooth is made in two pieces, the larger part being firmly bolted to the Plow-back while the other is adjustable and carries the cutting edge; yet, when locked, they are as solid as if one piese. A broken point on
any tooth is easily remedied by regriading this piece and readjusting ; whereas with the solid tooth Plow, either a new tooth would be

Fic. as. Plowing and Marking Scene.
required or it would be necessary to do a large amount of filing to level the points properly. Another great advantage is that the implements always retain their full depth.

Smaller Operations.

Where a full set of Markers and Plows are not needed for the amount of ice to be harvested, a good combination would include a Marker, 8 -inch 8 -tooth, and 10 -ineh 6 -tooth Plows, and in this case it would be well to have the 8 -inch 8 -tooth Plow supplied with a S wing Gnide, to be nsed only when the regular Marker may become tempo-

Fig. at. Use of the Plow.
rarily dulled by stones. Of, if two plows in addition to the Marker are not needed, a 9 -ineh 7 -tooth Plow, Na. 376, will answer well for

12 or 13 -inch ice. All our plows are made to follow themselves in sucoessive eats withont bisding, although naturally a succession of graded plows will run rather more easily. Figure 29 shows a single plow in operation.

Markind and Plowind with One Tool.

For harvesting a small crop, the ice man will find a single Plow with Swing Guide entirely practicable. Although Guides are sometimes attached to Plows as deep as 12 inches, we do not reoommend

Fig. 3a. Eight-inch Plow with Swing Guide, f-tooth, No. 388.
the Swing Guide combination for a Plow deeper than 9 inches. Marking ont cannot be done as straight with a deep Plow and Guide, and a long tooth will naturally cut more slowly than a short and more rigid one. Although the cutting as done in this way is a little slower than with a full complement of tools, it is incomparably superior to the old style method of sawing, as a horse and plow will do work equivalent to what a large namber of men can acomplish at sawing. No one who cuts 100 tons of ice can afford to be withoat a good iee plow.

Fig. 3E. Plow Repe, No. 4ta.
For those who want the best for long, continued serviee, the highgrade style of Plow and Guide shown in Fig. 30 is to be most highly recommended, as it is of the finest quality in all respects.

Plow Ropes for ase on Markers and all Plows should be at least 8 feet long between whifletree and Plow in order to prevent the front teeth being lifted from their work by the draft. One end at least should be provided with patent sister hooks, as illustrated in Fig. 31. We always carry a stock of these for the convenience of on customers.

Dairymen's Plows.

The great demand for a Plow for wide serviceability for small harvesters has resulted in a complete and less expensive lise known as the "Iee King." This popular type is made in three depths, 8, 10 and 12 -inch, each provided with a clearing and 5 cutting teeth, blved, and made with or without guides, and with guides of both non-adjust-

Pig. 12. Dairymen's "Ice King" Plow with Adjuatable Swing Geide. No. zao.
able and of adjustable patterns. We sapply these in large numbers to dairymen, farmers, and others harvesting from 50 to 1,000 tons. The substantial construction is well shown in Fig. 32, illastrating No, 320 Plow with Adjustable Guide. Send for special circulars of this line.

Ice Sawink Machine.

We occasionally have inquiries as to the economy of cutting ioe with a circular saw driven by some form of motor, such as a gasoline engine. Where experiments on this class of apparatus have been mode we have investigated the results carefully, but the machines up to this time have not been commercially practicable. The cost of such a power-driven outfit at the present stage of development would be well-nigh prohibitive, nmoanting to several times that of a full set of Marker and Horse Plows, which latter would cut fully as much ice in a given period. Simplicity in all details of his harvesting equipment is required by the ice man, and unless the work can be done mach more cheaply he will not find it to his advantage to use a far more compliested and expensive tool.

Ontline of Cutting.

A little system in laying out the various outting operations will not only greatly increase the ease of harvesting, but will much more than pay for itself in the coonomy secured. The ice is detached from the fleld in pieees asaally known as floats, which are made of snitable size for convenienoe in handling. If the field is at considerable distance from the house, the Boats are made of large size, as the ice in fhis form may be more easily drawn to the point where it is to be livided into strips and subdivided again into single cakes.

The main channel through the lield should be of ample size for the passage of these flosts, and the best arrangement for cutting up is secured if this main channel and the single-cake or house channel are at right angles to obe another. The advantages of these conditions will be mentioned later.

The house channel should be opened up on the day preceding the running of ice ap the incline, and after a considerable surface bas been marked and plowed. The channel should be at least eight inches wider than the single cakes. To cut this out, plow the two grooves on either side as deep as possible, slanting the grooves slightly so the strip will be a little wider at the bottom than at the top, sam both grooves through,

Fig. 3f- Opening the Chanael.
and then sink the strip after breaking it into pieoes of suitable size. Some dealers harvest these cakes, but time is gained by making ready for a faster run. Figure 33 well illustrates opening the channel and sinking the pieces.

Sinkind the Header.

This is really the same prooess as opening the chamel, but as the extension of the honse clannel becomes the end, or head, of the main channel, which is at a right angle to it, the pieces which are sunk are called "the beader." Then too, another header, at a right angle to the bouse chanel, bas to be sunk on the shore side of the main channel, which is plowed, sawed on a slight taper perpendicularly so it can be sunk withoat binding, and the pieces pushed under the edge of the field which is not to be harvested. Cutting out the header referred to is shown at A B C D in Fig. 34.

All of the deep plowing near the header should be completed before breaking it out, so that it will not be necessary to bring the horses near open water. The Saws used vary in leagth from 4 feet to $51 / 2$ feet, but the 5 -foot, No. 422, shown in Fig. 35, is most commonly used.

Mig. 34 Sinkisg the Header.

Fig. 35 Wre-foat Saw, No. 437.

Calking.

Before exposing any plowed seams to open water, even is the work of opening chan-

Fic. 36 Use of Calling Bar, nels and sinking headers, the work of calking. shown in Fig. 36, is a most important detail of harvesting, as care and thoroughness at this point will ssve an immense amount of labor in subsequent operations. If the plow grooves are left open, water readily enters and may run throughoat the field. Cold weather at this time would freeze the grooves up again, making replowing necessary. To avoid the possibdity of this additional work all grooves on the feeld exposed to the water as well as those on all sides of every flost should be properly calked before the floats are detached. The Hollow Handle Calking Bar, No. 457, shown in Fig. 37, is generally nsed. The grooves shonld be cleaned out to the botton by giving the bar a side motion, before any tamping of the chips is done, as otherwise an opening may exist at the bottom through which the water will pass. Thoronghsess in this detail is very important; and as a further emplasis it may
here be mentioned that incomplete calking is responsihle for a very large part of the poor ioe which is placed in storage. This should be very earefully watched thronghout the entire harvest whenever freezing weather exists.

Fig. 37. Calaing Mar, Hollow Hasdle, Ne. 4st.

Barrine off the Flonts.

With the two headers on one end and on one side of a float open, the third side is sawed, as shown at AB in Fig. 38. The only operation thes necessary to separate the float from the field is to bar off on the line BC in Fig. 38. This float groove along which the break is to be

Fig. j3. Sawing at End of Float.
made and also the grooves to be sawed should be plowed one or two cuts deeper than other parts of the field. The best tool for barring off is the Two-tined Splitting Fork, one form of which, No. 443, is shown in Fig. 39. It is made in different weights and with either knob or ring handle. The tines are so shaped as to wedge at the top of the groove, at the same time striking at the bottom if the groove is of

Fig. 35 Splitting Fork, Ring Handle, No. 43-
average depth. The blow starts a seam at the bottom, and by repeating these thrusts at spaces of a few feet the groove will soon open and the float separate from the field. A little experience will enable one to quickly determine by the dull cracking sound at what intervals the blows should be made. This operation is well illastrated in Fig. 40.

The Lynn Splitting Bar, No. 446, see Fig, 41, is preferred by some to the Two-tined Splitting Bar. If the ice is not thick, however, so that the grooves are plowed to a depth of about six inches only, the

Nig. 4. Barring off the Ploats
Four-tined Fork Bar, No. 449, see Fig. 4-, may be sucoessfally moployed as the tines are made of the proper taper for shallow grooves.

Fic. 4I. Splitting Bar, Lyna Type, No. 44s.
The size of flosts vary with different harvesters. The object of floating sheets of iee from the field to the elevator channel instead of towing single strips or cakes is merely becnase it saves men, is therefore cheaper, and makes more rapid housing possible.

The doats are now drawn toward the hoose channel or slip to be separated into strips. This work is often done by men using 12, 14, 16 or 18 -foot loe Hooks, as shown in Figs. 43 and 44. Some harvesters,

Fig. 43. Fork Bar, Ring Mandle, 4-tined, Na, 46
bowever, prefer to use horses for this work, in which case the No. 438 Towing Hook, Fig, 45, is used, sts it can be applied to the surface of the float at any desired point. This is attached at the end of a long rope, the length being sufficient to allow the horse to walk some distance buck from the edge of the channel. In some cases small steam or gasoline launches are used, towing several floats together. To prevent waves washing over Boats in rough water some harvesters place corber

Fig. 4s. Towing Mook, Na. 4y
boards along their westher sides. Figure 44 well shows the right angle relation between the main channel and the house channel, and the way the latter is provided with a temporary platform.

Fig. 43. Bringing Floats to Elewatot.

Fig. 44. Main Chansel with House Channel at Right Angles.

Barrink off the Strips.

As the floats approach the house, or elevator channel, strips extending across the full width of the floats are broken off, which operation is shows in Fig. 46. The tool best alapted for this work is

Fig. 45, Barring off Stripa
the Three-tinell Needle Bar, No. 486, Fig, 47, although some use the older-fashioned, No. 451, Three-tined Fork Bar, Fig. 48. The strips

Fie. 47. Three-eined Needle Bar, Ming Handie, No. 435.

Fig 48. Thret-tined Ferk Bar. Ring Mandte, No. 452,
are now run into the house channel or elevator slip, ordinary Ice Hooks, 5, 6 or 8 -foot long, Fig. 49, being used for their handling.

Fig. 49. Ice Mooks, No. 520 or 500 FH
The best harvesters, taking lee from lakes, have wooden platforms built on either side of the elevator channel, as shown in Fig. 50.

Dividind into Caken.

Feeding the strips into the elevator channel is illustrated in Fig. 50, but Fig. 51 shows much better the detail of breaking up into the indisidual cakes. The shortness of the groove makes a light tool

Fis. go. Feeding Ioe to the Hease Channel.
desirable, and there are several which may be used to advantage, depending upon the condition of the ice.

If the grooves are frozen up, the No. 486 Three-tined Needle Bar, Fig. 47, is the best tool. For grooves frozen less lard, the No, 485

Pig. st. Dividing Into Single Cakes.

Two-tined Needle Bar, Fig. 52, is exellent. The No. 480 Saw Toothed Chisel. Fig. 53, has some friemls; the No, 48! Tapping Bar, Fig. 7, is

Fig. 5a. Twe-tined Needle Bar, Ring Handle, No. 4ls
nsed; also the No, 476 or No, 477 Splitting Clisel, Fig, 54; and for high platform work, the 6-foot No, 490 Canal Chisel, which has a blade like the No 476 Splitting Chisel.

If the calking has lren thoroughly done and the grooves are dry, the No, 484 Canal Needle Bar, Fig. S5, also known as the Single-tined Needle Bar, is more generally pupdoned than any other, as it is very light. Whichever is asecl, a single folow shonh sever the cake from the strip.

Fie. st Splitting Chisel, Ring Handle, Na 436
Chips of ice and slush are apt to collect in the elevator channel, and the No. 505 Scoop Net, Fig. 56 , is used for elearing out this ohstruetion. Sieve Shovels are also quite popular for this purpose,

Fig. 55- Canal Needle Bar, No. 44
The cakes are now really to be removed from the water and run into the honse, or to a losiling platform for transportation. The No.

Fig. 35. Sotop Net, Na. gos
502 Elevator Fork, Fig. 57, is designed especially for feeding the cakes to the elevator, the two pashing points giving better control of the ice than the ordinary Ice Hook.

Elevatine Apparatus.

Success in the rapid and econombeal harvesting of a crop of toe depends to a very great extent upon the means of handling it between

Fig. 57. Elevater Fork, No. gea.
the single cake canal and the house. Energetic and systematic methods on the field are good so far as they go, but the best results
can only be obtained by contimuing these until the ioe is placed in storage. This artiele is intended to refer more especially to the field operations and the tools commonly used, and therefore only a brief outline of the elevating apparatus will be given. Complete catalogues are issued by us esch year in which all standard and many special elevators are illustrated and their construetion explained, as well as

Fig. 59 Pole Grapple, Na. 433

Fig. 53. Jeck Orapple, No. 43S.
a detailed deseription of all tools. We are very glad to mail these to any one interested, also to supplement sueh information with suggestions and estimates when the opportanity is given us.

Small Harvestern.

The smaller harvester is now as keenly aware of the need of suitable apparatus as is his neighbor engaged in a more extensive business.

Fis. 6 a
Self-Lubricating UFper Gin, Ne. jua.

Fis. 6a.
Sell-Lubricating Lower Gin No. 733.

Those who are content with no machinery whatever get along with the old-fashioned Grapples shown in Figs. 58 and 59 for incline work. For this work, good, metalline-bushed gin wheels, which need no oiling, are much to be preferred to common cast-iron wheels. See Figs. 60 und 61.

The Single and Double Gig Elevators, the latter of which is shown in Fig. 63, are convenient appliances, as they will handle a sufficient
amount of ioe, and no power other than that of horses is necessary. As many as seven cakes a minute may be raised by the Double Gig Elerator, and a little estimating will show that a fair-sized house may be quickly filled by its aid.

A machine very popular with the smaller harvester is the Perpendieular Elevator, Fig. 63. This may be operuted by a gasoline engine and will lift twelve cakes per minate to any beight desired. It is especially popular with the durying firms, several of the largest in the coantry laving one at each of their widely separated plants,

Fig. 6a. Dooble Gig Elevator.
When the honse capacity is greater, the elevator should be of theIncline variety. More ice may be handled in a given time, and there are also other advantages which reoommend it for consideration. The Incline Elevator makes the ase of an Elevator Planer possible, which eannot be adapted to any vertical-lift machine. The low cost of making the snow into snow ice and planing off on the iscline bas already been referred to under the heading of "Wetting Down," page 11.

Some of the advantages of the planing will be mentioned in the next section.

The elevators are variously designated as Side Feed, Undershot and Overshot, depending upon the method of delivering the ice cakes

Ne. 63 Perpendicalar Elevator.
to the feeding end or " apron." With the smaller houses the loe may be ran by gravity direet from sach an inclise into storage.

Fig. 64. Incline Elevator and Gallery Conveyor

Larker Harvesters.

Where the bouse consists of a number of rooms with doors in a row, an adjustable gallery conveys the ice from the elevator along the side of the house, a portion being switched into each door. This gallery ${ }^{25}$ raised as the rooms are filled. If the length exceeds 100 feet it is generally provided with a conveyor chain for insuring a uniform delivery of the ice. Tbe largest houses are usually equipped with the Elevator Conveyor, which has the advantage of a continuous double

Fig. 6s Eipraner Conveyse.
chain carrying each cake from the water to the various doors. Both Ineline Elevator and Elevator Cenveyor are shown in Figs 64 and 65 ,

Almost any kind of power may be used on these elevators, providing it is reliable. In the earlier days steam was almost universal, as there was scarcely ever any other power available. The electric motor is now often employed, and the extensive use of electricity has led to its application in many cases. Whes the combinations are favorable, it has moch to recommend it over any other power. The first coat of the machinery seeded is much less, no lioensed engineer is required, while the actual cost of the power itself is in most eases no more than with steam.

Planime on the Incline.

This has already been mentioned on page 13 as the most inexpensive means of taking care of snow which may fall on the field. There are other reasons in addition which are of much greater importance to the harvester, and some of which would reoommend planing even when there has been no snowfall.

Cleanliness in harvesting methods is one of the most valuable assets the iceman can have. The publie appreciates a superior article in ice as well as in any other line. Where there is an opportunity of making an choice, ice taken from good water, cleaned of any surface impurities and delivered in a satisfactory shape will take preferebse over ice lacking these qualities. Even if the field has no snow-ioe whatever, the surface must contain impurities of one form or another before it reaches the boase.

Fig. 66. Eereha Elevator Planer, Movable Carriage Style, No. aga.
The removal of one-half or one inch will take this objectionable matter with it and will actomplish mueh in favorably advertising the product.

Fig. Oq. Bureka Bevator Planer, Stationary Style (Adjentable), Na. aydC.

The point which may appeal most strongly to the practical iceman is the case in packing. Ioe that is taken at the same time from dif. ferent parts of the field may vary conshilerably in thickness. By making this uniform, level floors are secared in the bouse and the storing is done much more rappilly. The corrugations separate the blocks, the smooth bottom of one resting on the points of the one below. This treatment makes it easy to take the ice out, and grestly reduces the cost from getting out unplaned iop which has beoome frozen together.

Fig. CR. Susptasion Typt Chip Convegor.
By far the greater sdvantage to be zained from the use of a good, solid Planer with plenty of knife-tars is the storing of cakes of naiform thickness and weight. In decidling upon the size of cake, the trade to be supplied should, of course, be considered. By so doing a length, width and also thickness may be selected which will allow the necessary retail cutting and still give the least amount of waste possible. Attention to this point followed by equal care in throwing out all defeetive cakes before they reach storage will greatly increase the value of the house contents, as the sales records will show.

The most common thickness desired in different parts of the coantry is $121 / 2$ or 13 inches, and to obtain the advantages referred to the Planer is set for this at the beginning of the season. Filling a large house generally requires two or three weeks, and the field may incrense in thickness 6 inches during that time. This means that during the latter part of the harvest 5 or 6 inches must be removed from all the ice, abd to take off 8 or 10 inches is not uncommon.

Fig．69．Handling Chips with Water．
There are two general types of Planers at present in use：the Movable Carriage and the Stationary Knife type．The former，as the name indicater，is so arranged that the ent may be varied instantly and is generally used where the ice is to be corrugated only．Observe Fig．66

Fig．7a．Use of Howne Rens．

The Stationary Knife Planer is a natural result of the practice of planing an entire crop to one thickness, and indeed is to be generally recommended, even if frequently readjustel for changes in thickness. In very cold sections of the country where the fehl may reach a thickpess of 20 or 24 inches before the hoases are fillel, eight or ten knifehars are pecessary, A Four Knife-bar Planer is shown in Fig. 67.

The large amount of chips made by the Planer must be quickly and cheaply removed. A small cut will result in but few chips and these can be readily handled by a horse Sernper, bnt in the course of a large harvest, 5,000 or 10,000 tons, or even a greater amount of chips is not meommon. It needs no argument to show that an army of men with horse Scrapers woald be necessary to handle this, the cost of which work would be enormous.

To reduce this expense to a minimum, any one of a number of power appliances may be used. The Chip Conveyor, driven either independently or from the main elevator, is very geperally employed, and a Suspension type of Conveyor is shown in Fig . 6\%, Another efficient method is to float the chips by means of a stream of water delivered to a trough beneath the Planer. This is illastrated in Fig. 69. In some cases the locstion of the elevator is snch that the natural flow of a stream may be utilized for this purpose, but the conditions making this possible are extremely rare.

Honsing.

Figure 70 illustrates the interior of a bouse when nearly filled with 44×44-inch ice. Wooden Runs and Skids, as shown in Figs. 71 and 72 , convey the ice from the Elevator or Gallery outside the door as far as possible is the bouse, sufficient slope being given for running to any part of the room with little effort by the men. For this work ordinary lee Hooks constitate the larger part of the tool equipment, and some thes the No. 565 Drag, or Stowing Tongs with long handles, see Fig.

Pig. 7n. Weoden Run, with sides, Na. 73 M
\%7, in honsing operations as well as in taking loe oat. The Gallery, if an Adjustable one, should be only enough higber than the floor level in the room for keeping the ice on the move without using Seratchers. With fixed Gulleries, Seratehers are needed for reducing the speed, and considerable back-hanling of the iee will be neoessary in packing the end nearer the doors. The chips made by Seratchers in the bouse should be frequently shoveled out of doors.

Packing on the Flat.

The most common practice of packing is to store the ice on the flat, and the cakes when so placed should have a space of from two to four inches between them, exeept the two top tiers, which should be tight.

In spacing ice, the "straightener," or man who adjusts the rown of cakes, uses either the No. 465 Starting Chisel, Fig.6, or the No, 458 Bar Chisel, Fig. 80, as a steel bar is much safer than to attempt sys-

Fig. j2. Four-alat T-iron Skid, No. ju6.
tematic spacing with an Ioe Hook. Figure 73 is a fine illustration of most exeellent packing on the flat.

Fig. 73. Interior of Hoase Showing Corrugation by Elevator Planef.
To provest shifting following meltage, the tiers should be tied together once every sixth or eighth layer by breaking joints. Where the cakes are oblong in form, some harvesters reverse the arrangement in each layer, thus breaking joints on each tier.

Me. 74 Patent Ploce Shaver, No. 470.
After completing each layer, and before starting another, the sarface is dressed down, if the cakes are of uneven thickness, by using either the No. 470 Floor Shaver, shown in Fig. 74, or the 4701/2 Floor

Leveler, Fig. 75. The latter, however, is such a rapid cutter that it is more usefal in evening the ragged surfnce of layers of lee when packed on edge.

Fig. Is Flove Leveler, No, 470 I-2.

Packing on Fdge.

In parts of the country where ice harvested in winter is thin, or when the cakes must necessarily be housed in thicknesses of wide varia-

Fig. 77 .
Drag or Showing Tenge, Na sts

Fis. 7 E .
Utah Edging-up
Tonga, Nas 960.
tion, it is a common practice to pack the ice on edge. By this means the floors are kept level, and in case this ice is taken out in the sammer at a slow rate, the meltage takes place on the edges of the enkes instead of on their flat surfaces. Tools used for edging loe are usually the

No. 561 or $5611 /$ Eastern Edging-up Tongs, which span the entire cake, Fig. 76, or the Utah Edging-up Tongs with less span, which grasp the cake on the side with one point and on the top with the other, Fig. 78. The No. $4701 / 2$ Floor Leveler, Fig. 75 , above referred to, is adapted to

Fig. Ba. Bar Chiatl, Na 438.
rapid work in smoothing off lips, or flangers, caused by imperfeet breaking in the process of harvesting, and which will make a very rough floor unless trimmed down.

Fie. Br. Summer Har, Curved Ilade, Neavy. Na, qfo.
As most of the meltage in a house is at the top, the ice should be tboroughly covered as soos as filled. Any one of a variety of materials is used. Hay, straw, sawdust and wood shavings are the most common, hay being generally preferred. Whatever covering is used, it should be dry to serve well as an insulator.

Takine out in Summer.

In locating the house due attention is given to removal of the ise in the summer time. The doors and platform should be so placed that

Fig. S3. Separating Chisel, Knob Mandle, No. 495
the ice may be conveniently lowered and londed cither to wagons or cars.

Fig. 5]. Howse Ice Ax, No. Gon.

Fig 34. Wooden Flat Ski\& No , 7en.

The No. 458 Bar Chisel, Fig. 80, or one of the styles of Summer Bars, Fig. 79, is used in cutting around the cakes to thoroughly elear the spaces left in packing, suel as are shown in Fig. 73.

The No. 465 or No. 466 Starting Chisel, see Fig. 6, now comes in for the use for which it was originally made, in the operation of " striking up," by which the blocks of ice are " started " or separated

Fig. By Hall Oval Iron, Na. गy-
from the layer beneath. Some ioemen use the Summer Bar, see Fig. 81 , for both outting around and striking up, as one of the styles has a curved blade.

When ice is packed in blocks 44×44 inches, it is nesessary that they be divided inte cakes of $2 \mathbf{2} \times 2$ inches before loading cars or

Fig. 66. Pavest Y Rus Iren, No. 7sa
wagons. To make this subdivision the No, 4096 -inch Hand Plow, see Fig. 18, is used. In fact, the Hand Plow was originally invented, over

Fig. 87. Gig Lowering Machine.
sixty years ago, for this abe, and its employment on the ice field in harvesting operations was secondary.

The No. 495 Separating Chisel, Fig. 82 (also made with a ring landle), which has a long, thin blade, is used in breaking down cakes

Fic sa. Endiess Chain Lowering Mackise.
of ice when stored on edge. The No, 601 or No. 602 House Axe, Fig. 83 , is also used largely for this work.

The same Skids and Rans, see Figs 71 and 72, used in storing the ice may again be employed in chating it from any part of the house
to the lowering device outsicle the door, Iarge companies natanlly bave a lighter set of Runs for smbumer mse than those nsel in storing. Wooden F'lat Skids, sere Fig. 84, are popular as a Run for both purposes, as baving no sinles, the ice call be pullewl off at any point. F'or
 out sides, two of the tracks are ironeal with Patent V 13 m Iron, Fig. 86.

The Gig Lowering Machine shewn in Hi , xi is mach used for wagon lobnling. Where it is moesomary to sloliver the ice more rapidily to the platforis, as in car lominge, the Emalloss (Thain Towering Machine, Fig. 88, is to be revommenslesl. Another slerioe entirely antomatic in its working is the Pneumatic Lowering Machine. This, and other applianess, are thoronghly illastrated in our complete catalog, which will be sent on applieation.

Fig. 8\% Hease Run No jous.
In londing wagons the No. 720 House or Wugon Run, 6 feet long, see Fig . 89, is a most useful article which is wilely usev. In loading cars, the ran nsed is generally 7 fect long, and has stoppers welded on the bottom. See Fig. 90 for illastration of No, 7.2. Car Rum,

Fig- ga. Car Run, Na paz.
Next to securing payment for the commodity, the last chapter of interest to the seller in the history of a calse of ioe is -

Delivery to the Customer.

This subject could be written upon at great length. Different oonditions exist in different localities. A great variety in styles of Iee Axes, some narrow, some wide, sotne square and some round-bitted; Iee Tongs, a dozen different kinds of stock styles, to say nothing of many more private patterns; Ice Shavers; Ice Breakers; Hand Ibe Sisws; Ice Cleavers; Ice Awls, ote, are always kept in stock by ws to meet all requirements. Hoisting Blocks; Creepers; Scales or Balances; Wooden Soled Shoes; Rubber Aprons, and many other conveniences are also described and priced in our eatalog.

One very important element in the successfal delivery of ice we cannot supply, that is, the driver. To him, and to the forenaan of your routes, you must trust much. Even with the ooupon system well installed, you must depend for the best sucoess upon good men. If your luck has been poor, how would the following dot

F OR the convenience of our customers, we carry large stocks of Iee Tools with the following agencies :

Sickels-Loder $\mathrm{C}_{0 .}$. . . 3 Berday Seren. New York, N. Y.
 Stasdard Scale \&f Sapply Co.. Pittabury. Pa.
The Fred W. Wolf Co.. Atlanta, Ga. Heary C. Weber fo Co., Detroit, Mich.
Morley Bros. Saginaw. Mich.
Simmons Hardware Co., Ine.. St. Louis, Mo.
Richards \& Conover Hardware Ca.
Kanaas City, Mo.
Farwell. Osmua, Kirk \&f Co.,
Se. Paul, Mina.
W. K. Morinon \& 8 Co..

Minneapolis, Misn.
James Morton © ${ }^{\circ}$ Son Co., Omaha, Neb.
The Georye Tritch Hardware Ca.
Asacoeda Copper Mixing Co. (Hdwe. Dept.). . . Butte, Mont.
The Sale Lake Hardware Co.
Holley-Manon Hardware Co., Salt Lake City, Utah. Spokane. Wash.
Baker \& Hamilton. San Francineo, Cal. Baker \& Hamilton. Saeramento, Cal. Edwin J. Banfiell. tivo Alolisite Stroen. Wen. Toronto, Can.

Our Beanch Hosess at Boston and Chicago are maintained for the convenience and accemmodation of our customers.
crifford lood loo

Boston, Mass.

Eentetive 07fese and Fantorige

Chicago, III.

Hudson, N. Y.

1913

4

Cerobate

ick cool

ICE PALACE, SMRANAC LAKE, R. Y.

ICE

Elevating and Conveying

 MachineryAND

ICE TOOLS

HiffordAllood bo:
 Earablibled 1214

seta Eatisay aunemastsas
Mis, Sl-lie Ns, tharken In.
BOSTON, MAsst.

वravzia axatyarrest
No. V83 No. defterspon on
CHICAGO, 1LL
fowner
HUDSON, N. Y.

Coal Elevating Machinery

Many of those engaged in the ice industry are also interested in the coal business, and as we design and manufacture elevators and conveyors for handling coal, we shall be pleased to send our coal machinery catalos No. 14 upon request.

Ice Handling Machinery

XPERIENCE of more than fifty years enables us to furnish designs for machinery equipments, which have been proved by practice, thus precludind any possibility of expensive experimenting. The small details, seemingly unimportant, but which mean economy, are all embodied in our product.

Every illustration in this catalog is from a photograph of a Gifford-Wood Co. installation.

Drawings showing the correct construction of ice houses, together with specifications of lumber, will be furnished.

Correspondence is invited. Kindly fill in the answers on the enclosed Information Sheet and return it. This will enable us to submit prices and advise with you as to the best machinery for your conditions and requirements. If favored with your order we supply, without charge, drawings covering wood-work construction.

Side Teed EMenator-Cenvegen,

The Elerabor-Cotvegue is the anst erooomionl type of ise harvesting madinery yet fevised for a bosse of over ten thonsasd toens expacity.

Operatien. Two strands of endless clain, connested by wooden bold hars, fun from the water mop an easy incline alogg the adjustable galleries to the top of the machinery tower, which is placed at the rear of the house, and then return overhead to the water, Ice is fed to the chain from the side of the water bos (Side Feed, see p. 12), is picked ap ly the hold barh, and carried without transer or breakage to the doors.

One section of the insline is made telescoping so that it lengthens out as the galleries akend, keeping the hoist cabies plomb and the door chutes at the censer of the doors.

Advaatages. The men at the doprs pell of cakes as desired, and all poor iee is carried to the end of the gellery, where it can le dusped or mue by gravity to some cot-di-the-way place. The enily sen fequired from waser to tower are the sien ot the doees - ene at eich. The iee blows are convered with absolbte tegulariky, muking it eavy for the door mon so swith them isto the doors and for the bowse men to hasdle the ike quikly without concestion. The gallery sectiont can be raised one tier at a titse, olviating the neceavity of seratchers on the door chates. This peerents the acrumalation of ctipa and sleah that easies so mack troable when taking the ise ont. The ambent of back havaling to fill the reema sear the doors in minimiard, as shoeter slutes into the hosse can be weed, thas refocing the mumber of men required in the roores.

Capesty. The chain can be ran at two handred feet per minute, giving a capacity, with bold bars five fect apart, of foety bars per minute. This means for ice $2 z^{\prime \prime} \times 3 g^{\circ}$, eighty takes per mixute, or for ine $2 x^{*} \mathrm{x} 22^{\prime \prime}$, one bundred and sixty cakes per minste.

GIFFORD-WOOD CO.

Apasen End af Elivator-Ceaveyar.

Elewator-Coastyar wich Teasion Carriagt at the Trwet.
The above views Buatrane the labest improved otsign of Elevator-Convepor. The traveling tersion, which keepo the chain tighe, is placed in the tower - oat of the way - so arranged that no shortering of the thain is secessary.

At the water the oomitruction is mach simplified.
The improved double trem idler wheel, peoviding great steuritg, is illnterated on page 等, lettered TZ

Boston Hudson. N.Y. Chicago.

Site Tred Thevater-Cerveyer,

Fros the house to the feeding poist of this Elevator-Correyor is is foer hundred feet. This Eistance was necessary bectase of shallow water netirer the shore. The locution of the canal for the Side-Feed is distinetly shows. There are bat two workenes; the balance of the groep is foerned of apectators.

Side Feed Elevater Ceaveyer,

Overabat Elewatar-Coaveyar - Single Chaia,
Where the house in placed some distance from the water, an Overshot Bevator-Comveyor with a single chain and panhing pockets can be used. The initial cont in very arall and the operation practicable. A planer is in vese at this plant.

GIFFORD-WOOD CO.

Machionry. The Driving Machisery for inclise elewnots is placed at the oup of the sower. The Elevator chain is starsed and stopped by a friction clatch. Attachod to the endless chain at intervals of five or six feet are pockets carrying the oak lags or bold bars which extend actoos the incline from chain to chais. The ige is polled up the incline by these hold bars and delivered through the incline on a steet damg or rocker withoat concuasion, and the ice then runs by gravity to the rear of the tower. As the bouse is filled, the ice in carried mp the incline to the nest ruwway by inserting a trag at the opening just ased.

Side Feed Inclise Emvator.
Oparatias. The iet is moated over either fide of the water box, grided by a carved plork and gradually aasames the dieection of the incline. At the outer end of the water box, the hald bass pass ender the iee Wocks, but the bars gradually appesach the serface, and the Wooks are caught by the held bars and cartiod is to the dump. The empty chain returus to the water above the earroing chain, making a oentinuout cirouit. To allow foe variationa of water level and thickaess of ice, the apeon ransing from the incline into the waber, and the water bex which is sultrerged in the waber, are hinged, and they are sumpended either by worn gear apron boist or by lifting acrewt. (See page St.)

Capacity. The movemont of the carrying chain and the hold ban in always towand the ise house, peoducing a current in the water in the direction of the moring ice $s p$ that the feed is automatic, and the chain will draw the ice from the canal on to the hold bars. Twe wo foer akes of ice can be fed on each bar, with no babor attendant wishin thirty feet of the appon, and the Elevasor can be speeded at forty hold barn per minate.

side Feed Elevator with Gallery Ceavryor.

Side Feed Elevator trom Lake Oevt the Tracke.

Side Feed Elevator undet Street and throsgh Shed.

Underiket Klewater Iacliae.

The enyey chain retures to the water above the carrying chaie. The fiee is fed to the bold bans dievetly througl be end, ander the water wheel shaff, between the bold bars an they dencend around the thirty-six-ingh water wheels. These wheels ave adjusted so that they are partially ender water and the hold bars pirk ap the ice as it is pasbed bestween the wheels.

Capacity. On acoost of the nature of the feed, the dhain ought not be fun macb over tweety hold bars per simete, spaced six feet apart.

Eleraton can be run out any diatance from abore necesaary to obeain suffcient depth of *ater,

GIFFORD-WOOD CO.

Uaderabot Eivaters witl Elewator Plasers.

Overahot Tlipastor Isclise,

The ike is fed on the agron ever the witer slicele. The chain pastes up the incline and drops from the shain wheels in the tower so a point near the groent, whefe it is guiled by idier whecls, and retarnt to the apron underneath the incline. The ice blosks are Gelivered throagh the incline the same as bescribed ee page ra , bet it is necessary to curve the numaye to gaide the ice octside the dracending empty chain. The inclise and galleries are Bot, therefore, in tine.

The standard speed is one bandred and fify leet (wwenty-fise boill bars) fer mimate.

Overabot Elevator with Gallery Ceaveyor is the Rear of Howe.

Gallery Canveyer.

The object of the Gallery Comerpor is to convey the ise positivels, as it leaves the elevator, to the house doors along the rwinging gallery, thut relying upon gravity as little at pestille.

Operatien. With the single chais, the ice can be run up or down grade as desired, as pusting-pocketa or flights are placed at intervals on the chain. One devign exiends the chain along the furwigs to the incline, so that the ioe is received by the gallery chais immediately spon leaving the dump. Broken ike is diacarded by the door mow and carried to the end of the gallery where it is damped. Thit thain is independently centrollod by a friction elatch The gallery can be raised ther by tier an the house is flled, thus avoiding the use of scrabchers on the bocue chutes, and allowing the harvesting to coetinac until moon or right before dharging from ofe fuewny to the next. It allows the use of sborter door choves, causes less bock hauling, and reduces the mamber of men reguired in houpes.

Bope Deive. When the gallery coevegor madinery is drives ly rope, the power is tranmined from the bop of the elevator sower to the gallers. This driving rope is automatically adjuitod as the gallery is raised and requites mo attention.

Detachable Chais Drime. The power from the elevator bower to the gallery in triassniefed by detachalle chais. As the gallery is raised the driving chain is quackly shorvened.

Fight Aaghas. Oftentimes it is nectasary to ran the gallery at an angle to the elevator incliot, in whilh case the iot turns on a clicle in the bower and is delivered by grovity from the elevator chain to the gallery convepor chain. These corvegons can be run at any angle and are driven tither by rope, detachalle claien of motor, as desired.

We sell motors at the lewest prices.

Alove is Thastrated the new plant of the Berkahire Ioe Ca. at Congamond, Mass, showing a perflect machinery arrangement for eoonornical harvesting. The cont is comparativels low as single chaiss are sed for mosk of the dintanot.

The large houst, requiring two clevators, is located w+ll back frose the waters a half tomer is built for the elerators and the ghllefies exiend from a fisod point ot the bop of the tower throngh the house, thes eliminstiag all gravity futs.

The galiery hoists and lovg thaim are loang from the upper plate, boing away with all poste in the afleg-way. As the galleries ascend they are made fast to the hanging chaiss. thes peeclading aceiderta.

Two Gallery Convegsen betweta Boeser.

Elevater, Rape Drive Gallery Conveyse and Rupe Drive Clip Cannegen,
The ran oo the gallery is wife and is grevided with two single chaies with lights sile by side.

Gallery Canvepur - Straightaway - Rope Deive.

Repe Drive Gallery Cosveyur is Eaberier of Heame.

Gallety Cozveyar throagh Ceater of Nosse.

Gallery Ceaveyar Drive by a Dape.

GIFFORD-WOOD CO.

Abjasable Gallery Ranaing each way from Orerabot Elevitots.

Oppeatiar. The single, Adjestable Gallery is raised from one elecator roaway to the nesg, and the iov, puning log gravity, is patted off at the doon an dosired. The waste ice pasers to the end of the gallery. where it is dumped.

Adraatages. The ininial wost of this instalation is about the same as the several sutionary ruwayn, becaase the cost of the adjustable gallery hoist machinery nearly bulasors the lorge additional amotrat of limber secessary for slationary funwayt, lot the cont of enaintaising the adjestalile gallery is very mach lese. The pitch ee ioclination of the renway can be adjusted at short motice loy the doorman, giving it a greater pitch on soft daya atd less pitch of frecring days, so that the iet one be delivered to the doons without other labor thas the men at the room doors - one at each.

Stationary gallerics carmot be bexilt of coerect pitch for all days. If bailt for the wverige weather, scranders afe necewary to perand the speed of the jee blocks on cold dags, and additional men are repuired to pall the ice on soft dys. The adjusable gallery avoits this idditional expense. No feeman whe las mote than one room in his hoase can afford to be withoent the djustable gallery.

Adjentable Gallary with Ondenhet Elewatar.

Cenaterweighted AEjestale Gallery,

If is alwass well whenever as wjastalle gallery is med for the elevator operegor, gallery conever or gravity gallery, to counterlalange the rme. Although the gallery boist is wery powerful, and the gallery can be livisted by obe rian sholy, the arbount of soek required is very mech rediced whe the gallery is couserweighes. The expeme is small Weights cas te added so any gallery and talor saved for all adjustments of the ran.

The weighes which afe comectel ly wire ropes romeing ever sheaves to the tum may le hang free but it in preferabie to enslow them in shat wela as shown in the cot to preveat atcidenta.

The cousterweights, nearly equivalent in weipht to the run insel, peovile an efficiest sabety device, as the atrain on the boisting ropes is mach redaced and if perchance angthing sboshd give away, the liability of a serioes aceident morild be lesiened.

Operatiag a Callery Holut.

The Gallery Holst is used with elevator eotrveyors, gallery coeveyors and adjustalle galleries. The hoist ituelf is located at the top of the ladder popta and is marle sp with a worm and a worm gear, operated by a large manila sope theave, tarning two egirailygrooved drums, which witd up fwo steel cables. These are fastenfd to the gallery sections A en endless manils rope is ran arosed the large sheave and by pulling on this rope the gallery is raised. As the rope exlends from tap to bottom of poits, the door man can at ary mootsent faise or lower the gallery.

One man can tasily raist the gal lery when fall od ice, and the load is alvays locked.

Car Leader Serviag Two Trilas.

Operatien. This machine is used for winter shigment of ike ly carn, It can be made of wifkient length to fill as many cars simultanposily an detired. The preferable arrangemest is to rue the convepor between two suars or switcheh as ithosrabed is the cest aboves. so that while the men are siling one list of curs on cne side, the loaded cars on the other side may be pailed out asd the empries switched in.

Deviga. The oversibt type, with the entpty dain retuming underseath, is shown is the eut. Side Feed Car Loadern afe beitg employed more and mete. See page 3 for the construction. The rusway is raised above the car floor nsficiently to slide all of the ion it by gravity when the carn are filled four or five tien high. The platform on each side of the run on which the wwitchmen stand is below the ram and level with the car floors. A specivl conutroston makes in uneecesary to ppot the cars. The thevator planer (set pages $93,93)$ can be used.

A very lurge mumber of ears can be lowded per day, the susiler depesding griscigally upon the wwitding facilities, as the cotivegof has aimon enlimited captoity.

Car Ceeveyof - Water End.

Car Conveyar - Loading End.

Car Losier - From Water, Over Dasm to Cars Belav,

Lobding Caft with Track Patallel to Shore.

Chicado

The iet is delivered from the cans to the unbosing platiom, and bo a doulte chais, which picks the ice ap, conveping it borisoataily and then boists it into the house. The
 and can be bailt on each side of the coavegor to aoconmodave trains on both siles of the run

Freas Cars to Hoase by Elevatar and Caneyor.

GIFFORB-WOOD CO.

Tagna ar Sleigh Labler.

From Steigha to Houne by Side Foed Elevater.
The top cut Instrabes a tppe of Flevator and Corregor arranged to load simultaneonaly any mamber of wagoes or aloigh. The ioe is hasled a lose distisce so be elevated into the housts. The above plant is completely bpeippet, lavieg in addition a Phater and Caip Corveryor,

Wagan Leader.

Water Iat of Wagne Losier.

Hisisting ice from the lake so load wagoes ean best be actomplinbed by machinery. delivering the ice regolarly to the platlors. The above Alustrations sbow the work in peogrest on a small scale, while on page 33 the loading is being doee on a large scale.

GIFFORD-WOOD CO.

When io small boose is situated some distanot from the shore. it machinery eetfit sach ase is shown above is very satistwotory. Thin is the ice hoose on the estate of \& S. Whetier, Ampere, N. J.

The run wibl a siogle abain is stationary to a point aboot 30 foet from the bouse, at which place the run hinges and the ice is delivered bo the howe at all levels between the sill and the plate. The two separate siggle chaies, one estonding from the waber bo hinge poise and the obler from the hinge point to the hocse, are driven ly the same notor.

Chip Csaveyer - Surpenaloa Type.

Advantages. All ice harventers should plane their lice (set pages 92.98). The harvest can be completed more quickly and with less expense by the use of a Planet. lee huving a corragated aurface can be taken out of the house more rapidly, and with a saving of labor.

It is a great miatake to allow chips to accumulate under the Planer. The meltage in the spring casess the incline to be thrown out of line, and large sums are speat ewery fall where this practice is followed, in lestalling new posts and tiamber. To attempt to take eare of ayy considerable anoust of chigs by shoveling of emploping additional hoenes with scrapers is very experaive. The Clip Convegor does wway with all these evilu.

Operation. The slanh and chips froen the Plaier are carried awis by fighta or locketa artached to the chain at three-foot interval. Both single chain and doutle chain Convegoes are largely emplocyed.

The Convegor makes its own bed by the dhiph.
If can be built at any angle whanever to the ineline.
Saupeasias Type. The Suspension Chip Coeseyor, by which both carrying and retarn chaiss are supported by two nteel wire rope calles, is the best style. The initial cost is mo grenter becaase the wood poat construction is avoifed. If the chip pile is on a side bill or partly is water, or if it is in such a position as to make the meltage maven, this chip pile cas list, when melting, as much as it will, and no posts are thrown ost of lat of Broken. The maintenance expesse of a Susperaion Chip Convegor is practically nothise-

Rape Drive. The oljection of an additional engine for the Chip Conveyor has bevn overgone by the adoption of the Rope Drive, loy which a rope is led from the elevator tower ever illers in any firestion and to any Sistance to the Chip Convegor soser. This is $s p$ simple and so inexpessive - no atditional soerce of power being regaired - What seores of berten are sow using Clip Convegoes who could net affoed blem before.

CNip Couveyar! Surptision - Rope Drive fues Elevator.

Chip Canveyart Surpesion - Denble Chais - Matar Drive:

Ciip Cenveper: Sespendea - Dobble Chais - Rope Drise.

Chip Coaveyor: Sirgle Pont - Doable Chala - Dienet Deive.

Cbip Coaveyar: Daeble Post - Doeble Chais - Motor Drive.

GIFFORD-WOOD CO.

Punp for Flesblog CNips.

Under certain conditions purnpe can be used in comectigen with gakanised iron chip trought so tusk the chigs away from umber the planef.

As soon as the pile of chipe reaches aearly to the beigle of the planef, the pump is starned, drawing water through the intake, pasing throngh the pamp and discharging it ieto the trough located under the planer.

As the pile of chips is increased in sise, the galvaniaed iron srongh is extended by the addition of \&ith sectices as far as reguired.

Plact the pawp as low down as possille, petieng it to wiblin Sives, six, of seven feet of the water level. Alwags use a foot valee on the water end of the irtake, as shown is the foregroond of the cat.

The pamps are provided with suction primers, and a foot valve showld be naed to hold the bead when the poup is stopped.

At aight the valve stosild be tripped and the pomp draised. Be sene that the esatiry mastico line is air tight.

Do not attach the diecharge pipe with a 90° ellow at shown in the illastration. Use a leed or two 13^{6} turns so as to form a curse and allow the waier to dacharge readily, thas securing the fell capacity of the pump. A oo tem as shown in the cut will redace greatly the capacitr of the gemp, sometimes causing in wo fail to work. It is well alse to extend the dincharge liae straight up from the pump a couple of feet before potting is fele first turs.

A Y section of the troggh is aloo to be recommended, peovided with a valve so that the sater can be directed into either one side of the Y or the other at will. When making estetsions of troogh the operator avolds getting wet by extending the dry leg.

Caip Treagh

Made of galvanized lifoet in twes shes fl feet loge. diaped as shown $20^{\prime \prime}$ wide $x 8^{\circ}$ deep and 20° wille $\mathrm{a} 8^{\circ}$ deep.

Fleshiag Ckips.

Endien Chaia Perpenaicalar Elevater, Ine Erom Water.

The Perpendioular Elevasor is a very satisfactory machise for the moderabe capacily house, wheft rwelve cakes per misune is as morlh as can be handled. The low oost makes A popular with the smaller harventers.
bexge. The doulle endiess chain is feved with beackets at sis-foot istervals. The cakre are puahed into the sade of the machine and the asonding liracket picks sp the ice book, elevates it to the chute, and the ice then rems irbo the house A fatchet wheel is fopplind to prevent the marbine erversing. Springs are peovided which aid the discharge so that the ice leaves the machize prosiptly wher it reaches the chute, irauring perfect delivery.

Location. The Elevatoe may shand adjacem so the bouse, and often, to get seflient beph of water, it is placed some tent away, in which cave is is braced secarely and the ict rass from the macline to the hoose on a clute.

Endless Chain Perpendicalar Eleratar. "Dry" tee frem Mastarm.

This tope of Elevator is used when the ike is leought from a dintance and elevated irto the bouse. The ine is delisered to the planform and fed into ble machine as itdicuted above. and the operation is jeat the same as described for the water mactine.

Design. A loose hinged llipper at anoched to the frame furb with the platform, and just as soon as coe bracket lifts a cake of ioes, the mest block is shoved in and held in plact until the arrival of the next bracket, when it alvo is elevited to the point desired.

Seeep Ingrie Power.

The Swerp Hofse Powef is freynently waed Ior driving the lighter taclise Elewatoes at well as the Perpendioular. The horne is lowhed to a twelve-foot wweep arm, and travels is a circle, trameritting poser to the sprocket wheel on the Elevator by detachable dain Oose, twot thee of foir lorses may be emploged as the circumstances require.

Doable Gás Elivatac.

The Dooble Gig Elerator is ssitable for small capocity bosses, to the evst is very low and a horse in aned inatead of engine of motes.

Capacity. A house can be filled quickly as the avernge capacity for a mediun life is sevens to nine caloes per mianse. Five trandred blocks of ice, weighing throe handred pousds eack, can be raised per hour.

Opetatios. The gigs slide on maple strips and are checked at the proper polat in the ascent by adjusulle soop hars clamped to the uprights. As the hoase in flled. the stop lars are raised and the gigs travel to higher poins. As the borse walks out froet the elevitor, be hoists obe gig with its load, and the empty giz decps for asother cake. When the boese retarms the operation in repeated.

Blue prints showing construction are farnibhed tree of cost upon receipt of onder,

Singit Oif Elevatee.

In principle, this Elevator is the same as the Dowble Gig Elreator deacrised on the preceding pagt, exoept that the horve hoists when walking in one direction ooly. It la leut expensive than the Double Gig Elevasor. The gigs uses are Imastrated on page 37 .

ICE T001.

Oig Elevator and Levering Madise.

Gis Elevater and Aatomatic Lowerise Machion.
Gag Eirvatse. The Straight Face Friction Moist (page \& 8) and the End Threst Frictien Holst (same gage) are types of drum boists designed especially for elevating and lewering matufactured ike, at small initial asd eperating cost. The location of the drue itself is immuteriat, bor it is usazilly placed in the lofe.

A wire rope is led from the drum ever a writable sheive to a steel gig (tee page 6t) saspended in a well. This well is belt around the space taken up by the gig

A hasd eostrol rope is artanged to operate the licist feven any points desired. The arrangement shown on the preceding page is opical but this elevator can meet any postible conditions. Oace, twe or three cakes of ice, as desired, may be handied simultanocusly by the gis.

Whan the ice is penbed into the gig. a pull of the operating rope canses in to asersd When atopped at the peoper point, it discharges ins lood and the deveent of the empty eig in controlled by a brake band.

Levering. The siling bottom of the gig makes the feebing and fotivery automatic When lowering, the enpty gig may be boised by power, its motion being limited by an adjutable stop bar, and the deicent of the loaded gig controlled ty the teake band, of it perferred, a conaterweight is used in conjunction with the boiat and no power is required This arrangement requires an operator.

Aatonatie Lowering Machias. In a mumber of cases the lowering operations are mble aboolutely automatie by the sse of a steel tribe in conjunction with thit boist. Such an isstallation is shown in the cut above. The rope is travaterred from the drum os the pistos in the tulas, reulting in an Anbomatie Peematic Lawering Machine just as deseribed on pages 98 and 50 .This arrangument requirei no operitor.

Amprican Ien Cen, Baltimpre Mi- Oig Elevator Maist.

Electrin Frietien Helat.

Straight Faot Friction \#sist,

End-Thrunt Frictian Melat.

Deable Holat and Moter la Laft of Storage Honas.

Parimatie Gig Elevater.

When compresued aif is wrailalle foe holotiag mamblactired iot, a perematic eylinder is osennected up with a single or double gig, as ladicabed in the cut. The arrangemert and eptration is the sarne an that described bor the drum boise gig elevator. (See pages 45 tnd 46)

It is better so place the cylinder in the lodt to peevent any tendency to freeze, but if the tir in thoepogly dried, the cyliteder can be located in a Fefirigerated roon.

Cylinder in Laft aver Stecage Roans.

A gief with tws eakes of plate ice in the well commested to the air cylinder.

Heist Cylinder in Fertical Pesition.

The mobor shown drivei the eanvegor illestrated en page do.

ICE TOOL

Hasd Holat.

Masy manafactarers find ase for at tievanor and lowering mackine for sool small anousts of iet bat the inatallation of a power boist is met wartanted.

The full capacity of the day storige is often devired at a surplut and te0 much lebor s reguired to lift the ies bodily so the second and third tier. With the above portable telfiontained machine ose man can stack it eavily by moving the hoist over the floor on its rollers and operisting the crask. The brake in and for lowering

A compresaed air cylinder with air bowe connection can be sulstitused for the crank arrangenent

Cankiond Elevating and Lawering Mackine.

This design of mactine is used, not only in lee plans to fill and empty seorage tooms, but is extentively emploged at Car 1eing Stations.

Cakes of ice are placed on the receiving bracket fingers, and these hold them in potition until they are picked up by stroctural siecl laskets attiched so two endleis striads of ateel riveted chain, by which they are elevated to the top, then lowered on the oppouite side of the machise to any desired level, and there the basksts are autonatically relieved of their loade.

By reversing the direction of motions, the ice blocka are taken from the house to either the upper of lower plafform.

Dtagn. This feachine is alio mude to hande dry natural iet, i if, ive carried to an lice house pernote from water, in cars, sleighs or wagons Its mont common application is for car initg stationa. The tame machine it used to hoase the ice in wister as is esed foe eaking bet iot out in sarmmer. Otsen with large houses a machine in placed at each door and is drines by a tine shaft or ly an independect reopor.

Operaties. The ice ihowe in the cut is from cars Recelving ingers are placed Irvel with the platloens

At the wart the lischarge fingers are bear she botwoes of the bouse, but as the flling Procerds dery aft raised a fev tiern at a lime until the house is full

2everiac. To renove the ice from house the machine and all operations are reversed Both pectiving brackefs and discharge fingern are made so that they can be adjusted quickly, bence the ioe miv be received and delivered from either side at points corresponding in beight to both platiforms and the amount of iot in the bocse.

GIFFORB-WOOD CO.

Canblaed Elevatiog and Lawerieg Mackias.

This Illutration abows a case of outdoor ute where the ice ia elevabod, then delivered to storage by a gravity run àd a petumatic lowering machive.

When uned is the factory, the machine is gererally placed in the stocage roon and fed from the anteroom or wetikule through a mall dooe.

The sachinery at the sop of the frame may be above the swrage roons eeling asd refrigerating opils, and the electric notor or oeler operating powet may be sitnated it the bofe

Its capaciky is measared by the requirements, and is generilly operated at six to twelve cakes per misute.

The machise may be atopped lastanely and the load beld at ang time.

Minavy AAjentable Kadlesa Chala Lewering Machine.

The Endless Chain Lowering Machine has a high capacity and is aned for the rapid orlingty of lice from the house $t 0$ cans, hoass of wagoes.

Operatian. The ice blocis are lipped from the house dhute on to heavy wooden bucketa covered with sheet stecl. The guiding slass bearest the house are adjastable for the varging thichres of ice, therely petverting thin cakes from falling through, ueven pieces from wedging and allowing the aser to lower irregsolar blocke.

It is so construcied that the lorake band ia alvays applied, holding the load, and the lewering it acomompished by pulling a eope, partially prleapne the brake.

The lase po the machane is peovided with lheavy axles, bearings asd car wheelo, making 40teplete iroclos, so that it can easily be moved from door 50 dopr.

GIFFORD-WOOD CO.

Endikat Chain Lowerisg Machiae.
This machine is designed for Igghter service thas the leavg adjuatable type.
Operation. The iet is elelivered Iroes the house on to beavy irob-shod wooden backets betwees two endless chains. The weight of the ice oe the bocket operates the chain. The descent it oontrelled ly a rope led froen the brake lever so the platform or into the bouse.

The elain is allowed to Nun cely enough to place the bext bocker it position for receising its load, and at the same time the moversent diacharges a caloe at the botpoen of the machine. The foor boards, protected by vertical slats act as the back of the stachine.

If desired rollers are provided to place ander the sith, so facilitate moving, the Lowering Machine from door to door.

Of Lawerist MacNion.

Operatien. Ibe is Oelivered at afy bright from the bouse to the gig and held in position by a hinged gate bar which is automatically lified as the gig reaches the delivery platiorm. Alet the ice slides off, the gie gaickly ascends bor another caloe, being coanterlalanced by a weight

The speed is regulated from the platform or the locuse by a zope leading from the braloe hand. The adjustalle stop bar elimped besween she upright pests preventi the gig from gring above the reoeiving poimt. It is very economical in use and linitial cont. Mounted on rollers if dsaired to facilitate moving it from door to door.

Gigu lue page de alow

Tro Calkes.

One Cakn.

Antematie Psemnatic Levering Mabbisek. (Patratad)

This machine, builr entirely of steel, is very sabstantial and durable.
The gig. which travels in vertical geides, is eostrolled by a coumer weigh moving is a soeel tebe. The valvel on the couster weight proside a pneumatic eushion at each and of the travel. This principle allows a very rapid deop of the load and yet the gig is beocght ts a gradaal stop.

They are in me in at least seventy-five per cent. of the factorien of the coentry.

ICE T00I.

Antomatic Perematic Leverring Machise, (Polrated)

The machine is entirely automatic in its operation, A safety device at the top retalas the ise caloe in the chute smiti the gig is in positios to receive it. As the bottom the tilting of the gig venults in rapid and senooth delivery of the cake. The loe may be received at any Niet on either sille and may be delivered at asy level on eibler side egaally satisfactorily.

The spring belfers which listit the motion of the gig afe casily myastaMe.

Differeatial Loweriag Marhist.

This Lowering Machine is less expensive than the Automatic and is designed for shoot drops.

The spetd is govemed by an antomatic beake controlling it both is deicem and asotht, It will hasdle one of two cakes at a time as osired. The iev is peceived, lowered and diacharged automatically. By a different arrangemens of sheaves the head roon oan te mach redaced.

1

11

18

38

Gige

ICE reols

*Merrimat" Lowerisg Manlist.
The "Merrimac" when lowering ige regaires no power. It can be inclined at forty-five degrees of even more. A single chain is used and the descent of the lice is controlied by a brake. It in waed to lower ice at a very rapid rate from the house to boath, cars or wigorat. It can be driven by an engine or motor for semoving the botiom tien from the bouse.

Botton Tier Eleratar.
Power is required to elerate from the bottom tiers to the cars or wagona. This mackine is moved from dose so door on temporary ruils sdjacent to the house. Ise is pershed from the house on a cliccle and the elevator, whilh can be operated by a motsr or gasolise engine lifts the ice to ary height detired. When the ice track is tome distance away from the boase the reotiving end only in alfostable, the upper eed being staticaary, but oben the quarteri are crowded both ende are made adjustable.

Bottan Tier Eipratar.

The cut shows an octside elevator aperated by an ergine, boisting iet from the lower tien of the bouse to a boul. Both eads are adjestaMle to suit the cenditions. A planer can be aned if desired.

This effects a great assing in cont over the ardaoban method of jucking the ior out by men or horse.

This illustrates the invide me of an elevator for the lowest siers, saitable partienlarly where the bowsen of the ice is below the doorill, or where there is bet liftle room sutuide.

Bridge Holat.

Bridge Holats are wed esprcially for elevating ice from boats.

Hoisling Tongs (Na,sts, p. 135) are fastered to a rope which in led through suitable blocks to the dinm, by which the calies are quickly hoisted to the wagon platform of bridge.

Maltiple IriAgy 1Hplota.

A lise shaft eabending under the platform drives the frictions when several hoists are operated simultanecusly. The Straigh Face Friction Hoint (page 4) is very suitable 6or this work.

The Power Cost is mone peonotsical whem the hoists are made ap in sparate units with motors.

Ualsading frem Barge.

Single Chain Inclint Elrwater.

An evdless eblain provides the moat satisfactory means of transderring iot from one elevation so another.

The Single Chain lseline Elevator widh fights at proper ietervals, wlere the ice Wocks are fed directly over the chain, is illeatrated above.

The dooble chain deaim with carrying crow bars arrarged to receive the cakes antomatically feom the sife, is shows below.

Duahle Chais Ineline Elevatse (Side Feef).

Siagle Chala Iachion Elervatara.

Single Chais Coaveyot.

Americaa Ioe Compaay, Sirw Yerk.

Handling ice by manual labor in expersive. The saving of time and lahor quickly pays for the installation of machinery.

A single chain with peshing flighes at intervals, carrying ice focen the dump to the sworige foem doons, is shown above. The slopage rooss are fillod by switching the ice cthes froes the everveyor through the dsors to the elevasors.

When maloeding the rooms, the Sowering machine delivers the ice ts the clain and it lis then cusveyed aty dintance to the loading platform.

This application of the endless dain coevveyor represents bit one of the many powibilitics for its eas.

Any soepce of powef may be urilized and the tranarziswion effected by belt, chais of geans.

GIFFORD-WOOD CO.

Setige Statigas. leiag atationa are located at seitable points along the lise of reilronds for the dolivery of block or cruphed ice to cars for icing parposes. If the storige bouse in adjacent to the water or part of the factory, it in fllied in the ussal way, If not, the hoiating of car ice inso the boese in lest accomplished by a plaform converoe and elevator (see page 31), the "dry" feed Pergendienlar Elevator (see fage 4a), of the machine illastraved in the cut alowe, viz, the Conkined Elevatifg and Lowering Mactine, which is shown moet in detail on pages 53,53 and 54

Car Ielig. The ice is elevated from the houses wo the upper platiorm or crusher by the same machines, is some cases, or by Gig Klevabors placed isside the house, operined by Straight Face Frietion Hoits of End Thrust Frietion Heists illusrated on page $\mathbb{4}_{\mathbb{R}}$

A lower plutfons, when provided, is for the delivery of ioe from cars oo house and of Wlokvice frum louse to cars. The apper platform ia used for crubhed ket handled is carts of for Dleck-ise.

Itlage Statione
es

Icing Statian ta Readiaper for Trata.

Iriag Statisen. Speed and the arving of labor are the primaty objects to be astaised.
Elevators and coavegors are farnished to elevate the cakes to the crasker of platforms and to convey the ice along eitber of the platforms, diatributing ion rapidjy so the entire train.

The ice in carried to alt desired points along the plationm, or ly reverial of the machinery is may be retwrned to storage.

Crusked Iet. When crushed ice is used, it may be crushed first and then elevated by a bocket elevanor (see pages 78 and 74) or the entire eakes may be delivered to the cruber (page 14s), loraned at some distasce above the plations. The creshed ioe drops inds a storage bopper of is delivered diredly to the iet carts, which art held in retioness foe rapid ieing coon arrival of the trin.

Salt Elerzatera. Salt is often used with erusbed ice and a suikalle stornge lin should be provided. We sapply locket elevators to elerate the alat from car to bin (vot pages 73. 74).
lee Carts. These are of sabutantial sonutruction and yet light enough so be axily handlod. To prevent wear the bofiom is covered with galvanined iron. A sutfient ramber aboald be peovided to ice the entire train with limte or mo refilling

Creithed lee Cart.

GIFFORB-WOOD CO.

Under certain conditions, where it is impossible bo rus a chais below the floof, or where the floor carnog be cas, or where it is desired to have one chain run oe each side of a platform, it often hippens that a single chain ean be operated in a horioontal plane, kerping beth chains alove the floor, by insalling vertical drive shafs, placing the chain wheth beriaontally and arranging chaira, lights, wearing shoes and all machinery so correapond.

This type io ftoore expensive that the usaal vertical artangement and is not to be selected except when secial oonditions make if moee feasible.

The illmitration above ahowi the \&riving end widhout motse, of sach a conveyor at the plant of the Gate City lee $\delta_{\text {P Preooding Co, San Bersardino, Califonmia. }}^{\text {Pa }}$

Iriag Cask

Fing Station.

The plate ice sbown in the apper picture comes tron the storage fooms through the asieroom, and may be ased so foad cars as shown; or when icing cars in the top bunkers the Mocks are coaveyed anderground, under a street and then slevated to the icing plutsorm.

GIFFORD-WOOD CO.

I ciag Cars.

Cruabed lite asd Salt Elreators
These illastrations show two types generally usel, the double chain for cruahed ice, the siagle chais for either ice or salt. The capacity deternizes the type. The mathinery is stroar and duraßle, the material and shape of the buchets, chain and boots being conaistent whe the substanct hanified.

The following page illastrates a typical arrangement for an icing station. The erusher (see puge 148) wibll receives the block-ike either from cars alongside, or from stocage by means of the coevegor, is located benvath the platiorm and drliven crusbed ioe to the tlitwhoor, by which it in carried to storage lins above. In mang cases erushers are placed above and discharge directly into bink, being supplied with Mock ice by gig sleratorn. (Set page c)

The salt elevator reotives its supply from eans and delivers it to overbead bias. Mary traiss require both crashed ice for meats and Hook-ice foe fruit. The top icing platioces is wpplied with eppecially light, strong, crashed ise carts (see page 69) which are filled from atorige bins, pushed to cars, and the costents sluiced into ice boxal. The lower plasform laseles Bock-iee only, the convegor tranterring it to eilher crasber foe breaking. of cars for iking. The eonveper is reversible so iee can be retamed to storage. Salt boxes are placod on the lower platiorm at proper intervaly for each car, and are teplerinhbed furing ware time. Comenient reccivens He overlead trelley bockels of wheellarrows are sied to transfer salt from the sali-bin to the boses.

Often evmbised elevating and loweriag machines (soe page 53) are seed with this arrangement for itling asd enpoying the bouses. Trains deliver ko to the platiocrt where He eetregoce transfers it any distance to the machines, which in burn elevite it inno the boase. By peversing both machines and eservegor, ise is takes from the hose to crubber or cars.

ICE rool

GIFFORB-WOOD CO.

COAL HANDLING MAGHINERY

Smad fier ser Ceal Catalay'Ne. 14

apoo Toa Pocket, C. B. Kendall, Garderf, Mais.

The Backes Bevator Conveger worla equally well with anthracite or bitarninous coals, and is adapted for any class of service.

The oguipreent for this pocket consists of an Elevator Corncyor type of machine with a capocity of $\frac{9}{}$ tons of Anchracite coal per hoar, deisen by a to H. P. motor and silent chain.

The interior view shows the general arrangenert of the machingry and system of delierry froes the gates 80 the different hiva. Nipte the Alting chuben under the gates. At the end of each chute is a coal ladder which lowers the coal into the tis withoot beeakage.

The wagons are lasded underseath the poobet. The coal is screened while being deIrretrd to wagons. These sereenings are again sererned to segarate the buct, thas diopesisg with alt hand work.

Write so th if interested in handling coal.

GIFFORD-WOOD CO.

COAL HANDLING MAGHINERY

Soed for eser Centalay Ke. 14

Coal pockent showing wagon loating chutes

Distribating Coweyor showing gates.

Weat Eed Coal Cen, Allayy, X. Y.

The photographic euts on this and the following page fegreient apeon or alat elevator corveyoen for the soonomical trassfer and handling of miscellanepus sice boses and parkagen.

Thept are installed at the large prieting endablishment of the Nevins-Cleerch Press Co, of Irvington. New York.

Alove is thown the long burnel cotvegor carrying paclages, bubdles and bowes from the freight car plasform ander a bank opward to the first floor of the building.

The other suts show the elevator from first to second asd third floors for elevating or veturnisg goode.

GIFFORD-WOOD CO.

Apean Cearrybi.

The selection of power for operating elevators in very important. The various items of operating expenaes vary in different localities, bat generally the electric motor or gavoline engine angwers all requirements. The electric motior is to be preferred to any other motive power

Arragenment af Tewer Machinesy - Belt Drive.

Deive. Above is the belt drive, for which a standaed pulley is farriahed.

On the lelt the electric nower drive of an ellevator is shown, tranmieting power from the motor by geats.

Below are two gallery single chain Coevegors operatied by motori.

A gaBery chain driven by an elgint and manila rope is ilfustrated on page 23 Where an indeperdent drive io used for a gallery and electricity is sot available, the drive shown is the best.

Motor Drive for Elewater.

Mense Deives fer Gallery Cenetyers.

Car Paller vith Frictian Clutch

This syife of car paller is fursished with a friction clatch attached to a spar pinion. By the ase of the friction chosh the car poiler is at all times usder the absolate contret of the spersoor, thes preventing aeciderth. The machionty is moented on a leavy frame, the geans are extri strong, and the bearings are babbited and farnibhed with grease coph. The eapotan is Caat Iron, turned and polithod, giving a smooth sarface to the car paller rope, thes refocing the wearing of the rope to a minimam.

The Belger Newernly Car Mivel.

> Weichly, Cempists, is Ib.

Price, with Extra Spur $\$ 500$

Screw Trietien Clutch. (Pariolid))
This friktion clutch is very powerful and designed partioularly for the severe dofy of lanalling ice.

A clatch is indodet in nearly every equipmest, as its use is imperative. A meant of imsantly slopping the machinery is reguired, and the adrantage of sarting with a dutch is apparert.

Serew Fristige Cletch Farta.

8. Drase, mial apor glabion arrached.
s. Maple lags, boblod to eapshilere.
9. Expantera.

+ Clamp leals

3. Drivieg lich, hered is nlafl.

4. Laver Screw (thren)
5. Maek Link.
s. Shlypley Heb.
m. SNipplisy Dub Rise-
6. Merimable Finate.
it Sprisige.

Sher nsmbers trims felerciaphing:

Giffent-Wued Ca's Screv Friction Cletrh.

Agplicatise of Worm Gear Holat.

Worm Gear Aprsa Beist. A very powerful device for atjasting the level od the apoon is the water. Even when the water bex of apocen is full of ice it will easily hoist the load.

A nurn of the band wherl, which is casily accessible, winds the wire ropes anound the shaft and lifts the apron or waier hox oat of the water. A reverse turs lowers the load.

Lifting Skeres. Hewy wrought iron much are cast in the hand wheele. Two long screws sith esarse, synare threads are connected bo wire ropes of proper lenglh whid are anocled wo eye bols fasteved to the apros stringere.

Holsting Cral.

Application of Lifting Screwn.

IVsigtigg Crab. Convenimet Soe nee in many places. If the current in very sirong, tending to move the ise quickly, of if the waber is too deep bor poots the Hoisting Crak inay loe noed to adviatage.

The apron is sepported by a mast and boon with a rope runtring from the apeon-bwil to the crab and the aljostimest of level is quackly made loy a fex tums of the crank A tatclet wheel bolls the lnad at any point 4esired.

ICE roet

Retars Mler Wheel.

A very auperiof double flange return Silfer wheel for oonrejuts. It is impossible for the clain to leave the wherl.

Salety Chain.
No adjustable gallery shoclid be operased without a salety atuelment. The chais shows boited to the ruaveay cross bar, encircling a gallery poot with the book, is the bent devict is nes.

Chain Shee.

Kruackle Whechs Argle Whecls, of Chain Shoes are necersafy to hold the ehain bowe of the fanction of incline and aproas when the incline is stecp. Chain Shoes and Angle Wheels are bolted to the stringers. bet the Kanckle Wheth are Ioose and fout on linged arms. These are noll included in the price od machinery unless specified.

Asgle Wherl.

Chais Lever.

Very landy on the rus for holling or obnsecting the endr of the chains bogether.

Iot Gast Feader.

Fenderi are fitted to the ends of iceguards of gallerits, at the boerways, peeventing bereakage and jamming of foe cakes.

Kanckle Wheels

Wire Mope:

All clases and sizes of asot and iron wire rope with thenbles and slips supplied.

Chais. Iee Chain is made up of steel links of high ternsile stretgeth, $5^{\prime \prime}$ centers, riveted
 thick.

Chain Boles. These are N^{+}is diampter, and of diferent lergthy to attach the pocketa and flighte to the chain. They are secasered from usder the lowad to the eventer of the sfrilled hole. Each bolt is provided with a washer and ootser pin.

Chain Rivets Ile Chain Rivets are $\|^{\circ}$ in diameter and of werious lengths. In sedering, give length from under brad to end.

Hell Rars. Selected white oak is uned for the Hars. As these are tenoned by mathint, at ate exactly the same length, which is alnolutely esiential.

Ne. $\mathrm{Fa}-\mathrm{i-}$

$\mathrm{X}=\mathrm{se}-1-\mathrm{n}$
$\mathrm{Sh}, \mathrm{nt-7-1}$

Ni feriry

No $\mathrm{H}_{4} \mathrm{~B} \boldsymbol{i}$

$\mathrm{Now}, \mathrm{sen}+1$

Na. 34~\%

Ken H-Eか

Ne. sanda

$\mathrm{Na} / \mathrm{m} \cdot \mathrm{Fr}$

Ne se F Fl

$\mathrm{X}=14-19$

Sia. $5+1$ +
$\mathrm{Nb} \mathrm{M}-\mathrm{F}-\mathrm{c}$

Pookets asd Fightat.

Elevator Parts

AZ	Manila Rope Sheave, 5 Groose	JZ	Screw Friction Cluth	52.	Planged Wheel, 30° Diameter
B2	Chais Wheel of ${ }^{\circ}$ Diameter	$k 2$	Usiershot Agron Wheel	T2	Doable Tread ilauged Wheel
CZ	Welbed Flanged Wheel, ¢0* Dia.	12	Rutclet Wheel	U2	Take-sp Buse
DZ	Flanged Chain Roller	MZ	Batclet Wheel Pawl	VZ	Take-2 Blax
EZ	Tension Yoke	NZ	Raschet Wheel Pawl Stand	Wz	Chain Roller Bearisg Block
FZ	Pillase Block	O2.	Shipping Lever	XZ	Apron Hinge
62	Puliey Biock	PZ	Shipping Lever Fulcrum	YZ	Talcsooping Section Reller
112	Gear	Q2	Palley	27.	Manila Rope Sheave, t Grover
12	Chain Wheeh Teserned Teeth	kz	Planged Rotler	AA	Recesodl Angle Wheel

GIFFORD-WOOD CO.

INDEX．

RLEVATINO AMD COKVEYING machimery．

Notei For Elevation Parts ant give belve，wet pages by and

Adjestable Gallery Page．
Angle Wheel $24-86$ $24-86$
Agrust Cueveyor 7． 28
Apton Heista dj
Atiachmenta \％
Asbomatic Lowering Machime．．．．．A．58， 99
Boat U＇inhader 04
Bontom Tier Elevator．．．．．．．．．．．．．．．．．．．．．．．．63
Brackets \％
Bratge Moist 64
Roket Devanoes．Ier 60.73 .74
subket Devwors，Coal 75． 76
Bucket Bevators，Salt． 33． 84
Car loing 68－84
Car Loader $25-90$
Car Morer 3
Car Puller BI
Car Unhbader 51
Chin 85
Chwin Bolts 85
Chain Lever 8
Chain Shoe B_{4}
Chep Corveror b．14， $35-20$
Cip Trough 85
Clips，Wire Rope
＋75． 20
Cowl Machinery
${ }^{2}+75$
Combined Elevating and Lewering Ma－ chines 45－44
Converyon $67-74.89$
Conveyor，Boxes 77.37
Convejor，Carloyding $77=30$
Convegor．Gallery pl－12．so
Councerweidhted Gullery 25
Cras 83
Crushed lice 60． 33.84
Cnesked lee Cant． 60． 73.74
Dowble Gie Elevatos 45
Dump 4
Electric Motors 78.8
Elevating and Lowering Machine 8－4
Elevator，Belt Drive No
Elevator for botiom tiess． 62.63
Elerators，Coa！ 75 76
Elerator Comeyor，Side－Feed 6－11
Elevator．Crashed Ice 73． 74
Elevapor．Double Gie 45
Blevator．Blectrie Drive 80
Slevator．Giz 4）－51
Devamof．Incline（M＇ry Ice） 65． 66
Elevator，Motor Deive 80
Elewatof，Overabot 17．18， $24, \frac{34}{48}$
Elevator．Package 77． 78
Elevator，Perpendicular 41，42， $32-54$
Elevator，Preumatic 42 50
Elevator，Salt 69． $71-74$
Elvator，Side－Fend 12－14
Elevator，Undershot 15，16， 24
Endlew Chain Lowering Mactine 6
Fnd Thruat Frietion Hoast 6． 8
Engine，Gasoline
77． 2
Secaluter 7．
Fenter．Tie Gased
$\%$
$\%$
Flidets
Flidets k
Gallery．Abjertalile 44－25
Gallery，Connterweigbted 13－15
Page．
Gallery Conveyor，Motor Drive． 19
Gallery Conseyor，Rope Drive． 19－23
Galkry Conevegor，Right Anglez． 19
Gallery，Elestric Drive． 80
Galkry Hoat 3
Callery，Rope Drive． 19－23
Camolone Eagine 7
（aig flecator 45－31
Fis Devasor，Peeunatic 4． 50
Cog Lowering Machises． $45-51,9$
Gres 57.61
Hand Hoist 31
Hôis，Apton
43． 48
Hoist，Fid Thrut Fricticn．
26
26
Hoint，Gallery
Hoint，Gallery
51
51
Hont，Rand
Housht Face Friction 4
Hoist，Worm Gar 85
Hoating Crab 85
Hold Hars 85
Horse Power ${ }^{2}$
Hoase Plans 3
tee Carts 6a．73． 74
lee Geard Fesder 63－74
teing Cars
68－74
leing Staions
8
Ksuckle Whetls
8
8
Lever，Crain 85
Loading Wagom 32， 3
Lowering Machine，Aatomatic \＆ 90
Lowering Markine，Differential 60
Lowering Machise，Endiess Chain，
$52-54.53,56$
Lowering Machine，Gig 45－52，$\%$
Lowering Machine，Merrimat． 6
Merrimas 6
Metor Drive 80
Motors，Mectric 7．80
Overibot Eleratoes $17,18,24$, a4
Parts 84－8
Perpendicilar Elevator 4t， 4^{2}
Paevmatic Elecator
解瑯
Pockots：
75． 6
Porkets，Coal
＊
Pemp
${ }^{2}$
${ }^{2}$
Rivets
Rivets 8
Rope Drive Clis Conveyor 21
Rope Drive Gallery Coeveyor 19－23
Rooe，Wire 85
Safety Chuina 8
Salt Elevaite ．60．73． 74
Sboc，Chain 8
Side－Fend Elevator 12－4
Sterish Losder 詩 3
Straight Pace Friction Holat． 4
Suees Horse Power 42
Tower Machinery 8
Troust 43
Thaterilon Plewatee is． 16,34
Unlosdere Cars 31
Wagon Lodder 3a， 11
Wire Rope 85
Wire Rope Clips． 85
Worm Gear Apron Heina 8

F^{0}
OR the convenience of our customers, we carry large stocks of lse Tools with the following agencies:

Siekels-Loder Co., . . . 35 Berday Sureat, New York, N. Y. Standard Seale 8 Supply Co., . . 35 seath et serren Philadelphia. Pa.
Standard Scale \&f Supply Co.. Pittabury. Pa.
The Fred W. Wolf Co., Atlanta, Ga.
Hemry C. Weber \& Co.. Detroit, Mich.
Marley Bros., Saginaw. Mich.
Simmons Hardware Co., Ine.. St. Louis, Mo.
Richards 8 Conover Hardware Co., . . . Kansaa City, Mo.
Farwell. Oamun. Kirk \& Co., St. Paul. Minn.
W. K. Morison \& Co., Minneapolin, Minn.

James Morton 8 Son Co. Omaha. Neb.
The Georgle Tritch Hardware Co., . . . Deaver. Col.
Anaconda Copper Mining Co. (Hdwe. Dept.). . Butte. Mont.
The Sale Lake Hardware Co., . . . Salt Lake City, Utal.
Holley-Manon Hardware Co. Spokane. Warh.
Baker \&f Hamilton. San Franciseo, Cal.
Baker \& Hamiltoo. Sacramento. Cal. Edwin J. Banfield, . . . 100 Adslaide Strow. Wout. Toronto, Can

Our Beanch Houses at Boaton and Chicago are maintained for the coavenience and accommodation of our cestomers
IiffordAllood bo

Net. St-4t Merch Melket Stuent.
Boston, Mass.

Sexertive OPToes ans Favorisa

Na. 52t marn lefterwith licent
Chicago, Ill.

Hudson, N. Y.
(9)UR AIM is to maintain a standaed of quality in lce Tools that noes will eqsal. Prices are undormly quoted 0 a a basis f. at b, cars-
Terma ase 30 dags to cubsesens of recoed.
Penons with whon we are unacquainted or who have no rating in Bradstreesf: Reference Book shoold accompany oeder with cash, of give selerence to some baak of vel-ksowa batises honse.

II requested, soods will be reet C. O. D.

TELEGRAPH CODE

Cable address: "Gifford, New York."
Ordens by telegraph may be condenaed by aning the code worde which are prised in cosenection with the prices given in that catalog.

Prefax "Freight," "Sonmer," "Experan," abo "Collect" (for C. O. D.), as may be deired.

Plesse specily method of shipsent in each case.
Whes fractiona of a doarn, or a few doeen only, are wazted, une the following code vexbl lor quastiky.

	ea	Drizs,		osen	Druers,	t	saten	Dragein,
!	*	Dserent.	$\stackrel{z}{\text { a }}$	*	Drapor,	$t_{p}^{\text {t }}$	*	Drama.
4	*	Dever.	$\frac{7}{6}$	*	Dexter.	,	*	Dryad.
I	*	Delies.	$\stackrel{\#}{17}$	*	Dwoltr.	6	-	Derst
$\stackrel{1}{4}$	*	Desotr.	1	*	Dwars.	4	$\stackrel{ }{ }$	Dalcert,
$\stackrel{1}{\square}$	*	Dreses,	3	\pm	Dosuino.	4	"	Drke,

Eustration: "Expreat Collect Desote Nettle," would coder 5.12 donen 4\% lnet loe Hoola mat C. . . D. by exprem, and "Freight Delcet Nettile," would order by fright 5 dosen 4\%/2 feet Ice Heoks.

Red paint has been our previling color foe year. Othern imitabe it; so alwags look loe the stamp of "Cifford-Wood Co." en every tool.

Puinsind Mant inner
Eareka Elevater Plaser; Mowable Carriage Style; Diagosal Cot.

These prices oovee Plases for any widl of isclise ny to sixty inchen. Prices on Faners in exoess of this wibth gaoted on application.

The diagonal cut of the kesife-lats is one of the important features of the Earela Clevatof Planer. The shock of attack is thus mach redoced, and the planing io more steadily done.

The frame is complent in itsell, and the entire structere can be remowod bodily on the Incline.

The borioonbal racks partioularly diatinguibl the Eureka from other planers, and carry the weight of the carriage and knife-hark. The latier, therelore, do not have so be wifod by the operabor.

The Bapela is quick and easy of movemest for ase is akimening calveh, of when aeoessary to cacape a riding block, and io rigid and positive in action.

Its consuruction is beavy and sulotantial - o very importam elesees in ice machisery.
Flaning ice in an indivpenable operation in oeder to obtain a auitable product. Nearly all impurities in ice are teat its bop serficte, and shoold be planed off.

The Stationary Stple (get easily adjustable), shown next page, is to be reoomeneded wherever practicable, as the floon are sure to be level, and good packing in mach more chraply and easily obeaised.

Faltwind Marnli nicma

Eureka Elevator Phaer; 5 stationary Style (AAjastalle); Diaganal Cet.

[^0]No. as4A-Eurela Elevator Planern, Scationary Style, a knives

cote Wied	Sauk
Ast	\$12500
Apir	15000
Ager	17500
Ahay	20000
Aim	22500
Alate	25000
Alimbe	27500

No. 154B. Eareka Elevator Planers, Stationary Style, 3 knives
No. as 4 C - Ererela Elevaor Planers, Stationary Style, 4 keives
No. is4D. - Earela Elevator Paners, Stationary Style, 5 koniven
No. as4E - Earela Elevator Planers, Semionary Stple, 6 knives
No. 254 F , - Barela Elevator Planers, Stationary Style, 7 ksives
Ne. 154 H --Fureka Elevisor Planern, Stationary Style, 8 knives
These priess cover Planen for any width of incline up so sisty inches. Prises on Paners in exeess of this widfl quoted on appliention.

Mest harvenitra sow use this style of Pasact. Some fot is their eetire crop planed so oet even thicknes. This proctice makes perfiectly level hoons asd simplifes the retailing bosetis wonderfully. Wholesale shippers of mataral ice to markets where mansfactured iot is sued have a great advantage in furrishing cakes ed uniform weight.

Others who canost afford the wasve inoldectal to reducing the fatire crop to one atbickassi, change the depth of eut from sme to time wad yot get the benets of level floors.

The imile-bars of boob styles of Plasers (see peeceling page). are set to cul one inch to rich sel of knives, exeepting that the fear cut is mode jt itch

The cheapest way to remove stoow fall from the ike-feld, when the ioe in sot boo thick, is to wet then down, freeae them and plane at the ran.

A large mumber of five- 50 sight-kaife planers are mow in une for the above-named wirposes.

Eatier a goot Chip Convepor (see pages 6, n, 3, 40) or a parsping outh (see page 30) in in aboolately secreary acoompasiment.

[^1]
GIFFORD-WOOD CO.

Plamed Ice.

This ibostrimioe gives an escellest lideh of somet of the advankeges to be gaized by plasing ice before storing.

Ahbough for mary sears nowe but she larger class of harveuters glaned their ine. in is sow a rare thing to fed atyose engagod in this itelastry that attermpts to pat in a crop of ice befoet plasing either on the field or on the isclise.

Ice treabed in this manoer gives a cake of undern thigksess, the floors of the bouse are at all tirses level, allewirg more ice to be stored and hif far leas expense; fewer men are required in the hoase and the ise is handled quicker and with gyeater ease.

The corragated surface tends to keep the calken from becoming frosen together and which allows them to be separated move eavily and withoot becabing whes removed.

Hy adopting this method all surface dirt it femeved, which apprals very strongly to the monemer, who always purronizes the deaker sething good stean iot

Sectien of Earpla Cutter Raz.

Na 259.-Eiroka Coller Bars, complere (made so measurenents sent wis)
Yo ajg - Patent Enreka Flanged Teeth
Ya. 2 ga - Tent-Head Bolts for Flanged Tecth
Sa. Ja- - Patent Open-Top Teeth

Sa. 34 -Coumtersunk Spuare Head Bols boe Welge Teeth

Coble Wond Alock Atala Then alder 05

The Eareka Cotoer Par, suted with Planged Teeth, makes ma abolutely first-class knife. shich is unctralled. We drill each lar so that a flash-toard can be bolted to ins bock, to prowsm chipe from faling on to the corforgod cakes.

Patert Eareka Flanged Treth are lect quality tool-ated and are fionly tempered.
Grind the beetb only on the top sidr, leaving the lotsorn side strughe
 bels seed sonly to be loostaed to reanove a sooch, or so at in forward.

When ordering a Planer, state whether your elerator is an Incline Elevator or an Elecatar Corveror, and the swe cakes yon cut.

If as Isclise Blevator, piease give measmerements $\mathrm{L}, 2$ and 3 shown on diagram above In is well alse to sate the jetich of your inslise - the namber of inches it rises in a horiacotal font

If an Elevator Convryof, we need mearremests is and a

Pat. Opes Top Tooth.

Pat Welge Tooth. C. B. Square-Head Batt.

Theve towth were ued on a former pattern of Knife Rar. and are ilhutraned mo aid ia erdering trpairs.

Eureka Planet Breah.

cube Wurd	Rava
diluber	\$700
ANeres	890
Allieposk	10.00

Narela Planer Brushes made of twot qualty wire or Glare.

The reinforced lacke esterad a suffeiem detance leyond the flore to allow for attaching if the Plancr. Hy their wae the blocks of ice are wwept clean before entering the house.

GIFFORD-WOOD CO.

Peafection Tield Planer, fited with Eereka Cutter Nar and Pateat Flanged Teeth,

> Weight, whlo mos kelif. gre lhe

The Perfecticn Field Planer, or Cultivator, has a great advantage over the Ordinary Field Planer, shown on page Sg, in thal we grabving by ohe marlier is regtired Before operating it. It is peovided wich independemt raserers which are raised by the operator at will, s9 that one will rest on the uncut aurface, allowing the knile $\$ 0$ cat 80 sach depth as is desired, while the other rasoer is drogped to the level of the knile and reits on the plased portion, thus making a perfect joint with the previous cutting

A pair of good horses will plane off, at a single trip, froes two to three isches in depth, and the fall wists of to inches.

For cutting off drifted bencles of sap ice, the Perfection Planer is irvalaable. The levers can be nanipelaned at will when in use, and the chig can be graded from nothing so the deepest cat,

The Reversible Track Cleafer leaves a good gath to travel in foe the glow borse which follows in the planed part:

The Seatisnary Clearing Wings maturally leave i much narrower path.

PERFECTION STREET ICE LEVELER

Invaluable for Cities and Street Eailways.
Uhed as the beit and most economical method of ceoting away ridges of ice between street railway car tracks and leveling anreets.

Ask the Superiatendent of your Higlvay Department to send for illatrated circelar of our Bpspound Street loe Leveler, fined with our Patent Pareka Teeth

Ordinary Finld Plaber,

Patant Tereles as-in. Keife-Bar, enepilete.

Filgha, beend, Fins

Cede Weat Eail
No. ape-Ordieary Filid Planers, 22 in wide, with one Pateat Eureka Knile-Zar, complete

Alcoer
$\$ 3500$
No. appi-Patens Eureka Knile-Barn, complete for 22 -in. Ordinary Field Planer

Ahernale
1500
No. Afz.-Patent Eureka Krile-Bafi, cemplete, for az-in OSdStyle Planer (${ }^{*}$) Ambuitadr

1500
No. Xoo-ABjestable Depth-Gavges for Markerk, with Bolts (we page 85)

Amersify
100
Na agh - Eureka Flanged Planer Teeth (page 95) . . . Allats fo
No. a90 - Tent-Head Bolts for Flargod Teeth AMtioe as

The Ordinary Field Pianer is made with a fies-clasa Patent Enreka Kaife-Bar having adjutatic feerh of best tool-steel quasty, fiedy tempered, whikh oas be set forwasd as they wear, and if can be recommended to small harvesters who do not feet tike making the investment foe the Perfection Planer, slown on page of

Mark oot the fold of ice in parallel groves, taking care to bold the Marker (oe the Swing Geide Plow, as it may be) so that the gooves will sarely he eloser together than an inches, and then mo binding can ocour as would be the case were the grooves wifer apart thun 22 inches. Some use a guide at inch or more nafrower slien marking for a Planer.

Set the Adjaatablir Depih-Gange of the Marker (see page sob) so that the latter will groeve the exact depth desired to plane off.

Set the Inife of rite Plimer even silh the bottom of the sides of the Planer. The knife will thas cut the Marker groves completely, and make a perfect lap.
*If an estra Paveat Buneka Keide-Bar is wated for oar No, ato Old-Sple Field Planer, be careful to order a "Na alla Keile-Bar" (eode weel. Ame. barrade), as a No, 2 y 0 /h Krifp- Rar for the newputtern Ordinafy Field Plater would be one-hal inch too short for the odd-stple welded-frume Planer, here sbowe.

Na. ator 014-Style Field Planer.

Welaht of the ecreper milhoet ehale, ats lhe

This style in the most eftective and pogular scraper in use. Many large ice companips who have had extended experiesce with expensive pitented scrapers now use so other kind than the Boston for all ©ppths of snge and planer chips.

Made in a most thorough manner with matched lamber, oak throughout, heavily inoeot, and painbed twe coats.

The handles are long esough to prevent the operator frem stooping.

Three-righth-inch chaina are preferred bo ropes. The loote ringt to which they are fastesed slip along the draw lirons in bumpling and the draft helos so reverse the seruper, The scraper handies when inverted reat upon the iron crowarod beiween the chaime

Clearizg-af Scraper.

Welyes al eft. vith ilafin, ofolite.

The Clearing-oI. Scraper is an old, standard trpe that will always have frienda, as it is overmenent for scraping light mows, plow chips, and foe cleaning up after the sorapers enployed in removing heavy tnowe.

These Scrapers should be sted with shafs, as they are ander betver coetrol and mare sasily krpt in the right path.

The ends are strengthened with teill angle irons and made in a thoroagh manner throwghout.

Dairymeri's "Iet King " Plow.

Weiglic, wab cam, iny Be.

Plows Na. 3yB-yph, without Guides, cannot be uned bor marking out, and are orly for plowing dewn.

Dairgmen's " Ier King" Plown, No. 345-yth, are not intended foe thooe who harvest loe is a businesk, being devigned expressly for

Dairymes, Creamerits, Betchers, Cosnisy Oentinmes and Farmers

The "Ice King" is made affer the plan of the ligher pricel and fifer grade iotmes's Plows, and was introduced by as some years ago in reaponet to an mrgeat dernand for an implement decidedly superior to variones types of chewg Iee Plows of the market.

It is not expected that the "Tee Kirg" at searly ose-half the cost, can egual the best guality bool-steel Mows for service, bat we guaraniey them superigr to other Fiows of similar grade.

The solid ateel teeth are not polinhed as in the iommes's Plows, hot are left bloe, The Geide is substantially mode and is stiff and strong, and the Plow has only to be liept peoperly sharpened to cost rapidly and well.

When grocves, made the day before, become partially froven during the night and it becomes neceisary to rt-open thens, the "Iee King" ean le oorveniently handled to do this dificult work.

Dairymart " Ise King" Plew,

Wriche, widh sask, swilhe.
Cole Wert Eeob
Na jxa -8 in . "Ice Kings," 5 verting seech and elearing tooth

Na. 3zi.-toin. "Ice Kings" 5 cotting teeth and clearing tooth, with 44 to zz-in. Patent Adjumable Swing Guide , Arch

300
Ne. $322 .-12$-in. "Ice Kings," 5 cuttirs teeth and clearing tooth, with Patent Adjusable Swing Guide (mode to arder onify)

Anchery
3800

Oer new Paters Adjestable Swing Guide for the Dairymer's "Ioe King" is a perfect arragetsent foe those who neod to est more than one sire of cakes.

The atock sires are drilled to mark iee $14.16,18,20$ and $2 x$ inches. Other sires made so cofer.

For eusvomess who always cut the twene sied squate cake, we fecommend the Nos. 318.315 and 317 styles, as non-adjutable guides are naturally firmer.

Sving Goides on plows mast coly be used when marking oot the feld of kee and the plow mast sot fut twice in the tame groeve wioh the gaide cm .

Mark oot the felld as described on page 85 and remove the Guide when plowing down
We file the "Ice King" with a feed to ext IV-inch at a draft for a light horie, bot it can be filed in a few monests to feed moee for a beavier borse.

A borse in foue runs, at a pace of three miles an boars, woold eat the equivalent of a groove 6 isches deep and 66 fect long in one minute, thes equaling the aawing capacity of fity men is raiach ice for the tame time.

The " Doe King" will, therefore, save its cont in a sbort time.
Etery Phow if presidel ainh a waden case to prolect tier trelk.

MARKERS AND PLOWS OF HIGHEST GRADE

The teeth of our high-grade Marloers and Plows are made from the best of tool steel, and are tempered foe hard service. Their ahape, width of cot - being graded for different Oepths (see page sap) - and their faish, ati have a bearing on their ease of operation and the ethiency of their work

Many details oontribute to peodnce the standard madhines of our nake, which are so vell known among ice-harvesters of all oonntries.

Pateet Rusatr for Plows.

Showing Patent Ranner. Attached to Plow.

Patem Renners can be annalled to oll plows and will case then to groove to their fall depth.

Our mew plows lave a combination high slandard and fusocr, which, in connection with the extra large chip ppaces cut in the beams, allows them to cut clear down without sticking and throwing over.

Shewing Bandle-Guand Attached te Hasile.

Handle-Guards got on the hasdles of Markers aed Plows pervent wearing when implements are ieversed. A substantial cate is fermished with every Marker and Plow.

Iet Teel File.

Ice Tool Filon are made od the very best ateel, and are uned for filing Plow, Markers, Hooks, Tongh, ene

t

Inserted-Tooth Ice Plows and Marlers do sot redace in depth by weat when hept properly fibed and set, and, as a bruised point can easily be sharpened and then be gaickly set to its proper level, they have sieadily grown in favor, being more economical for large larvesters, and mote eserverient it case of Bamage boe imaller iot-gathefefi.

The inserted soeth used in oer Perfection Plows and Marlers afe fetod so sicely (iec page 104), and the fastering is so posirive in ins binting power, that the teeth are as firm as if they were solid. Duplicate teeth alwags on hand

The New Patent Eatension Gaike in the atroegerat Guide when extended that has ever bees pett out. (See ferther description on page 1to.)

In catting 12×32-in. cakes, the Exsension Guide is much more coeveriont than two guides, saless the latter are 10 be permanently attacheds to two separate Markers, in which ease we recoermend two solid guides.

Fach Marker has an Adjustable Depth Gauge by which any desired change in cutting depth can be inteartly tegulated.

[^2]

Fin. Patent Perferties Plow, 3 Treth, with Patest Itins Hteel.

		Case Wual	Euld
Nat 39,-6in. Patent Perfection Plows, 9 sutting seth	1 =	Arregaty	\$800
	4.	Aractal	6000
	+ 4	Arlal	61000
Na. 34a- 12 i in. Patent Perlection Plowi, 5 cesting teeth	- .	Artichaler	6200
No. 34 - 8-is. Patent Perfection Plows, 8 teeth, with Faseat Estenvion Guide, 22×33 in.	- 4	Asphent	7200
34 - po-in. Patent Perfection Mowh 6 teeth, with Pulest Extension Guide, za xya in	- .	Apping	7300
o. 345 - La-in. Putent Perfection Plows, 5 teeth, with Patent Fastession Guife, 23×32 in	* *	Aasy	7460
No. 3g\% - Perfection Teech, for 6rin. Plows - 4	4 -	Aater	2.90
Ne. 3q3 - Perlection Teeth, for B-in. Plows	, -	Aatere	2.55
Na. 390 - Perlection Teeth, for 10-in. Plows	, -	Atasric	37
No. 390-Perfectien Teeth, 保 12-in. Plows	*	Atar	375

Sbrolag taper belt halling blade in pesitiea.

The advantages of adjastable of imertel leeth in Plows and Markers are referred to oe the preceting page, and theif popalarity for many yean varrants the naree "Perfections."

The Paont Hind Heel is a very importart featare of these Frows, as the feed of the Plow can be iealamily changnd, without filing, by meazs of one tiper bolt at the rear end of the leam.

The sut shows the adjustment. The main body of the booth is rigilly bolied to the plos back. In front of this, foined by tongse and groove, is the adjustable cutting blade, firmly clamped in position by a taper boll - the most simple and effective dastener get pluced on the teralke.

Markte vith Swing Guide.

Weight, complate with case, has lhe
Ni. 388.4 -in. Markern, 51 curting teeth, with 22 -in. Swing Guide, complete
Na. 356 - 8 -is. Markers, It couting teeth, with one min. and one ywin. Swing Gaides

Ceste Wert
Each

Fer

Feall $\quad 6600$
Fifirem $\quad 6 \mathrm{r}, 0$
Amenity $\quad 1.00$
Atory bo grooving wila
Markers are ased to murk out the field of ice into squares perparatory bo grooving wia the Plown.
 sdjunalle), without Guide Consections

Fhag
$\$ 7.50$
${ }^{*}$ No. Jo3-Swing Gaiden, any ingle width, go-in. to porin. (non adjustable), without Guide Connertions

Flamer
8∞
${ }^{*}$ Ne. 364- -5 wring Gaides, any single widh, 40 in. to 48 -in, with sold forged double brace (rot adjuwable) no con,

Fiap
1000
*No jbs.-Putent Extemion Swing Gaides, 22×32 is, mo con,
Feg
10.90

No. 36i. - Patrat Extmision Swing Guides (vee page 310), in ocher sises than No oigs extra above price of Nos $36 a, ~ \$ 6 y$ and 364 withont Gaide Consections

Fernge 3∞
$t-\mathrm{F}$ In ordering an Extension Gaide separate from its Marker, be sure so state whether it is for Periection sofle wibh iaserted teeth, or for Solid-tooth Marker, as the attachment is estively diferent.

Make a straight line, f-isch deeg, with a Na apt Hand Plow (or a Na soo Line Marker), wing a atraight edge, then ran the Marker teeth in this line werous the feld, thas marking the first grove The Marker Geide placol in the groove thes cit, regulates the dotusce for the bevth to cut a seoond groose parallel to the first.

Every Marker of sur make Depth-Gauge, by which to regas changes in the evotition of case in is dlaired to plane off ste of the Field Planers shown

These Depth-Gavges can eth sof naw peovided with

Depth-Gauge.
is peovided with an Adjuntable ulait the degiths of the grooves the ise may require, and in a Fighe surface of ice by the on pages osh sp.
atio be attached to old mark. them
Cate Werd Earb Amernity $\$ 1 . \infty 0$

Na. j6o-Adjusable Depth-Gaeges for Markers, with bolts

[^3]
GIFFORD-WOOD CO.

5

Walpha, wal cem, bey lat.
Cede Fiont
Eev
No. 369 - -5 -in. Groove Clearers, so eatting teeth Fartrost \$8000
When groowes Becoese parily frome during the right, to that oedinary Plown eantot be ran in thens, thes Groeve Clearer will successfully free them to ita fall depth, of to the depth set ly the deptb-gauge.

Phew, 6 in , $\%$ Teeth.
Weight, with rame wh low
No. yri. -6 -in. Plown, 9 cutting teeth

Cate Wend Fosnil

Han $\$ 8.00$

"Plev, τ in, 7 Teth.

No. $3 \mathrm{Fa}-6$-in. Plown, 7 catting leetb
Code Wend

Eech
Ns. $303-7$ in. Plows, 7 evering teelh

Pleve, i in, I Tenth.
Walphe whe came, ug line.
Na. 134-8-in. Plows, 8 curting teeth
Cade Went
GaWep

Eatb
$\$ 8900$

Plow, i in, 7 Teeth
Widith, with caw, ues lie.
Na. 395-8-in. Plow, $\%$ outting teeth

Barl 3400

Pisv, 9 in, 7 Terth.
Welybs, elat caws, un libe.

Cole Wend
Rael

Plaw, 10 in, 5 Tepth.

No. 307 - Mo-in. Plews, 6 cutting teeth $\ldots \ldots \begin{gathered}\text { Cate Woed }\end{gathered} \underset{\text { Garnet }}{\$ 5300}$

Plow, ta ing s Tetth.

No. $309-12-i n .5$ gutting teeth	,			-	*	1		Code Wend Garryts	
No. jall - I4-in 5 catting teeth								Gatr	65.00
No. Jla $=16$ inc 5 getting teeth								Gpes	7000
No. 383 - 18 -in. 5 cutting teeth								Generral	75.00

Main Plows-glows without guides -are sed to follow in the groove nade by the marker, and are graded in cutting width. (Sce page tah))

A fall set for large operationa eootists of a marker, 6 -in, 8 -in, 10 -in, and 12 -is. plows. engaging five hornes at once. This list can be doubled or trebled, or increaned in markern foe very extentive and rapid seok, of it cat be reduced to any extent coessitemt with the needs of the harvester.
 shallow plows as will answer, They are stiffer, have more teeth, cut a wider groove and will cut fanter than deeper plows.

Iec will beak without diffenly if grooved to one-half hs thicknes; but it is moxh betier for the harvester to groove at lpast two-thirds through if he is particular about having the cakes aplie true, without "ligs." The head-lines, grooved for detachiag fleats, are usually made deeper than other grooves.

Piev, if in, 7 Teetk, with Svigg Gaide.
Na yoy. - 6-in. Plows, $\%$ cutting leeth, with azin. Swing Guide (wright, with case, 135 Phe)
No. 3\%6. - 9 -in. Piow, \% cutting Becth, with az-in Swing Guide (wrighe, with case, t.p the)
No. 38 - 8-in. Pows, 7 cutting toeth, with adin Swing Guide (wrighs, with cast, 130 Des)
No. zkel - 8-an. Thows of cating teeth. with azin' Swing Guife (welighe with case, 190 Ds.)
$\mathrm{Ka} \mathrm{Mg}=9 \mathrm{~m}$. Fiows, 7 cutlitg betth, widh 22 -is Swing Guile (wejgle, with cast, 155 Tre.)
$\mathrm{Na} 301 .-10 \mathrm{in}$. Plows, 6 cutting beth, with az-in. Swing Guide (weide, with tave, 160 the)
Na. 30s-lain. Piows, 5 eatting teeth, with ia-in. Swing Gaide (weight, with case, 170 Ibs.)

Cobe Wond	Each
Genser	$\$ 90.90$

Givert $\$ 2.50$
Glese gi.go
Glise sige

Glote sags
Goldfak 6 r .90
Griffle thiso
Whan two Gaides for one Plow are wanted, in onder that two-siued cakes may be cot, the prices for the adiNional Guiles will be is follows:
We mbi-Swing Guides, afy sifgle widh, 16 -in. to 18 -in, withont Cormectiona

Cast Wien	Eark
Grill	$\$ 7.90$

 Connections

Grotip
800
It in not practicalle to use Gerides wider than 36 inches on Plows, as the plow-beam is mach Migher above the ice than a marker-beim.

Connections with eross-har are coly teceded when it is required to antach a eomplete Sving Gaide to it Plaw owich war sade suithear a Gaile and swich har aniy o plain crossbor fefmeven the handles. They cotsiat of a netchod crosi-bar to go between the plowhamles in which to lock the gridehandle, four crotelod hinges, four bolts for the hiages, and Ewo boits for attacking the Srias Guide to the hinges.

Io andering a Gaide for a Plow, the carrect depth of the Plow mast be giver
A Plow with Swing Guride attached it a drvice for combining a Swing Guide Marker and Plow, For dealers who pot up small quantities of ice, it is a convenient and less expentive arrangement

Do mol expect a Ploes with Golde to equal the Marloer in rewina. The marker cuts fetper at a drift, and, being shathow and more rigid, is eapable of oloing straighter work than a Pow with Gaide. We eecoemend the uete of the Marker and oese of mote Plowh and the full beneft of the gradotias in cuiriegreaith is then oblained. (See pages iod and 50.)

Plew, 9 lan with Patest Eateasipn Swing Gaife.

Patent Extension Guides otber than a2x 32 in made to oplet.
In ordering a Gaide for a Plos which is not sent to facoafy to be fitted, it is absolately neceisary that the ocerect depel of the plow be given.

Uned principally where ice in housed in blocks containing two or more eakes, so groove beween the cakes befoce splating fhem apars wha Doable-Cake Bars wien discharging. It is usefat also in mabing the first lise on the lee-field and in firisking sut the ends of the grooves made by the borse Plows. Six-ifsh is the ssoul sise.

A painted ease is strapped of every Plow to ptobect the terth
When sharpeving. Gle the veeth 50 feed brinch each. (See page aga for method.)

Plow Bupe.
Lespl, 8 fort.
Na 422. - Mow Ropen, thimble one end, Patent Hook other end. Hasper \$1.35
Na. 431 - Mow Roper, Patent Hoolas both end . . . : Heragen 2.50

5 fl .8 xw

Na. 430 - lot	Saws 4 feet,	with cast			,	-		Code went Heckey	$\begin{aligned} & \text { Eack } \\ & \text { Is } 500 \end{aligned}$
Na. 4 at.- Iet	Saws, it letc	with case	,	*	,	\%		Hallend	525
No. 472.-lite	Saws, 5 lett	with cast	-	*	,	*	,	Hole	\$-50
Na 423- - Ice	Sawn, if foel	with case	,	,	,	.		Nood	575
No. 435.- Ice	Sawn, 4 feet,	withoert case	+	\pm	$+$	*		Hep	490
Na. 4xam - Jom	Sawn, it feet,	without case	,	\pm	,	-		Horse	4.75
Na. 4 rg - Ice	Sawn, 5 feet,	without case	.	-	.	-		Hort	500
Na. 4 P3-Ion	Sawn, it feet,	withost case		-	,	-		Hautile	5 ¢

"Gfford-Wood Co" loe Saws are made in the most soperive sanser, and are not to be eompared seib the oleaper kinds tisually sold The aeeth are esufi loig and have a large bevel eausing them to cut rapidy. The wrought-ifoe handle is reversible.

Creacent tce Baw.

Fole Grapple.

Jack Geapple.
Welyting ry ibes; doops it in.

Used to dras caloes of ice ap an incline by horse of steam power in the absenct of Elevator Machisery. Both styles are made of steel.

The Pole Grapple is sometimes rigged to felum on in overhmad wire.
The Jack Geapole is preferfed loy mary, being more tigid.

Code Wond
Eech
No. 488 -Towing Hooks
Jockey
革 500
To fasten imso a flout of ice slen placed on its sop surface. Very mach moce mefal than a style that has to reach over the edge.

Splittiag Foek, Knob Hasdle.

Splifting Fork, Ring Bandis.

No. 443-Spluting							

Made with long steel tines, tapered so as bo give great wedging power is the plowgrooves without "shelling" the ice. Their weight makes them particularly serful in breaking ofl lloats of large theets from the ict-feld.

The hewy sire ls designed particularly for use on ty-inch ine, and upwand derply grodevel.

The light sixt has tieks mapted to wedge in grooves plowed but 6 ter 7 iseles deep.

Splitting Bar, Lyen Type.

> No. 4 - Splittine Bar, Lymn Type, y-in. wide
> Cede Werd
> Each

Made with a solid steel blade.
This is preferved by some to the Splitting Foek foe barring off.
 Frod Ca" manp at at tomk.

Fark Bat, Kasb Hasalle, 4 Tized.

Na. 408-4-Tined Fork Bars, Keob Handle Lapel Lard Each

Fork Bat, Risy Hasdle, 4 Tiend.

Code Wient
Bent
No. 419 - - Tined Fork Hars, Ring Handle
Lepter
$\$ 450$
The 4 -Tised Bar is priscipally seed foe spliting strips from foats wlen the ice is light. The tines hive the rigit taper for 6 -isch grovess and are not adupted for deep grooves.

Toak Bar, Inob Fandin, 3 Tinpd.

Colt Wead
Tael
Na. 490 - 3-Tined Feek Bars, Knot Bandle Lark $\$ 400$

$$
\begin{aligned}
& \text { Tork Mar, Riag Eandle, os Tiapd, }
\end{aligned}
$$

The s-Tined Bar is lighber, has a longer handle than the 4 -Tined, and in better adapted for spliting off single calks of short strips.

The No. +K Three-Tined Needle Bar is considered by mary a more effectise inplement.
Al our Foek Bar hewds are forged from one solid piece of aboel and the points are beveled to a sharg edge.

This is an early style of barring-off lar. The pod end is What, laving no sharp edgen and is used for "lreaking off" in a gropse, but being tapering, is mot suitalle for calking.

The chisel edge in oorrenient for pplitting off single cakes.

Calkiag Bar, Itotlev Haselle.

Coste Wert	1
Lawn	\$35

Loag ariangular Blade, for seepent grooves, gas-pipe hasile.
Usod to calk the ends of the grooses oet the field and on the floats hefore they are detached, with the chips made in grooving in order bo prevent the water from running in and treezing up the grooves.

It is very inportant that all ends of grooves be well calked, so that the splitting off can be well done without breaking the cakes.

Many larvesters are not parficular enough about this, and have soo amall a sapply of Calking Itarn.

Calking Bar, Tropt Itanden

Bar Cbisel.

Na. af - Bar or Packige Chisely, steel handles. . . . Leat itgo
Made with a loag blabe and beveled on ooe side colly. Unod to out aroend the gakes in getring ioe out of the bouse, and for trimeting off ary unevesnes of the blocke when atoring iop in the boose, aluo for spacing and straighosaing the seama.

Sammet Bat, Carved Btade, Beany.

Na. sob - Semmer Rars, heasy surced Wade, poliched handle
No. q6ot-Sumer Rars, heavy, strayht blade. polished hande
No. 46 t - Sammef Hars heavy, earved Made. painled havile
Na post-Smmarer Bars, beacy, siraigh blade, paineod havalle

Crabe Wend	Earb
Lenctary	\$500
Ledery	800
L-961	4.50
Lrgred	4.50

Simmer Bars are tasd its sotne localities for the dooble gurpose of evtting afomed atal strikieg ap ice in the house.

This heavy, sive is goverally mect, and excopt of the Hadwon River, the atraght Bade is perferret. Non, fit and fitt are liphber and earrower. All blabra are of solid tool steel.

Sammet Bar, Carved Blade, Light.

This lagber atgle is sometimes perierred. Blades selid tool teed.

Startiag Chisel.

The Searting Chisel of Striking-Under Plar. is made for the porpose of surting ug the blocks of ice in the house affer they bive been evt around with the Bar Chisel or Sammer Ilar.

Mate of steel throughost, with round handle. The regrelar patters has a narrow blate with eradas, bpeand corve of mader side.

This bur is a faverite one for "wetring down " a fall of wow, on account of its crive, allbough the blade is somewhat wider than the regular No, ofy Tapping Bar.

Startiag CWisel, Onaka Patters.

Socket Bar ChimeL.

Code Went
Exb
Lead $\$ 190$
Similar so a No ath Ilar Chisel, but walh a wooden handle, making it lighoer in weight. Na .43.-Floor Chisels

Lodby
\$5.50
The Pooe Caisel is a Socket Clisel beet at an angle is the shank. Ita luse has been hfgely mperseled by the No. a70 Floot Shiver.

Fatest Flast Shaver.

Na. 4o-Pateon Floor Shavers, 5 teeth Lecafe $\$ 273$
Floer Shavers are very useful in leveling a lloor of ice in bouse of vessel, being bemt for curvenimes in operating.

The tootbed, wide edge cuts rapidly and easily, and the paterted, rocking blade causes the "foed" to be acesrate.

Ove new and improsed Fhose Leveler is adapted to 40 eapid work whete the ice tequires a large kmount of leveling so be done. Is weisht asd obsspoction give it a facility for beavy
 padeed on edige.

Iet Als.

Splitting Caisel, Ksob Haadle.

No. ats-Splitiong	Chisels, Knob Hander, steeled Blabe	Case Wirnt Ledge	$\begin{aligned} & \text { Kant } \\ & \text { \$az.25 } \end{aligned}$
No. 45 - Spliting	Crisels, Koob Handle, all tool steel		
	cd *Extas")	Loment	299

Splittigg Chimet, Risg Haadle.

Na. 4 \%h - Splinting Chisels. Ring Handle, abeled blabe . . Lotw $\$ 2.90$
Na. ayz.-Splitring Chisela, Ring Handle, all sool steel Made (marked "Exra, ${ }^{\text {² }}$) , , Loyel

275
Uned to split off single cakes either in the canal or on the platformi. Handy for graeral use, with a blade of aniform eaper on both sides.

Sav-Toath Chiprt, Ring Handlo.

Whee grooves becone frosen, or are of lasafficient depth, this type of Splitting Chisel is very effective.

Esprcially adapod for wetting down a fold of ice after a snow falt, as it has a marrow cuiting blade which peoperanes the ine easily, leaving a small hole which freeaes up quickly.

Canal Nevile Baf, Ring Hasdle.

No. Ry - Canal Needle Bars. Fing Handle, t in abel . . Maric \$2co Na. \&hit-Field Needle Hars, Ring Handle, it in, ateel . . Magwate 2.25

The Canal Neodle Bar is a lieho tool for splaring off cakes ie the canal, and where the plow-grouving is well bost it is eflective.

If will alio do most excellent service in sinking a field of ice, as it makes a very seall hole.

The Field Needle Bar is made of at inch sterl, and is heavy enough for barring off.

Needle Bar, Risg Mastle, ; Tiaet.

Waicins is lbe_lengh, if. enN lin.

When plaw-grooves are partially froeen, the two oval tines break betver than a sipgletised bar. .

Neetly Bar, Ring Handle, 3 Timet.

The these oval tines fumish manl wedging feresiure is the groove, and where the ioe is vois well plowed, or has lecorte froten up, it is very effective for irparating titripa or alote

This lar is one of the very best for wes on the float or in the canal,

Canal Chial, Keab Handie.

The Canal Chisel is of the aame type as No. 95 Splining Chisel, bat has a finch ateel handle 6 feet long ased whes the operator stands on a ralsed platform.

Canal Caisel, Weed Hasdle.

Abstract

 Mach ligiter than the steel handle style, and sometimes preferred when the ice ia well srooved.

Sepantieg Caimel, Kabb Handle.

Abstract

This Chinel kas a love, thin blade, and is for separating caloes of ice in the house tohes parked an edge.

Sone ioe factories peefer it to the No, 475 or No. 477 Splitring Chispls on acocunt of its thirener blade.

Na $\mathbf{4 0 0}$ - Deuble-Cake Bars Mrral $\$ 3.90$

This bar is nade with a steet pad wich bluent nder.
It is uned in summer for sab-lividing large Blocka eontaining two or foor cakes which lave beth geooved in the loase by the Hand Plow.

Where rapid loading is neceskary, a man sees a bar in rach hand

> Liat Marker,
> Wrigh, sibez lenget, if if. In

CedrWind	Lail
Mrthed	Sogo

This implement is a simple affair by which a first line one-lalf lach deep can be made on the ige feld, asing a atright bourd as a guide. The marker teeth are ren in this shallow nowk, thas making the first croose in starking oet a field of ice. For those who have no Hasd Plow, it serves as a mbstitute for this parpose.

Thin article is dermed betser than an Joe Hook for feeding ice to the elevanoc, as two pashing poiets give beber eostrol of the caloe. The hook aflivedy a means of holding back the iof, if mecestary.

Fandle 6 foet lorg. Longer handles made to ordet.

These are made as lishn as possille by the use of steel chain
Used so remove from the water amall pietes of ice which obstruat the dannel.
fr does not freese and dose up the opesings, as it is reverved each time it in emptied.

GIFFORB-WOOD CO.

Sieve Shavel.

Wuigat,, He; tile of Sheref, if 8 in in.
Na 906 - Sieve Sbüvels, 90 -isch handle

Cale Wient	Each
Mimar	$\$ 1.75$

This wire showel is very usefod is dearing the caval of clips and pieces of iot.

Perfurated Ice Scospa.

Na gag. - Perloeated tee Sooops, esinch handle , . . . Minwe ingo
Alhough not as quick a strainst as the No. go6 Sicve Shovel, this Soopp will stand hanter usage

Code Wiond
Reck
Wrigh ot Hes lewgh, $3 \mathrm{f}, 4 \mathrm{im}$
Mosifor \$3.go

No. $\$ 10=$ loe Angers, s is in
Mosifor \$3.50
Dhed in making holes through which to meavare the ice, also to insert pifs for streteling lines, towing floath, and for other parposes.

Measering Ro4.

Na. 512 - Measuring Rods, poliahed, nambered to 24 inchet. . Mowogram \$ogo
This iron measafe catcles on the botooes sile of the bele made by the Ice Anger and the thickness of the ice is at once shown. Marked off by I-inch nobeches.

Int Teal Graple.
Wrigh. 1 theil lench of tering. + A

Cede Wend	Farl
Moranl	$\$ y 00$

No. 515.- Ioe Tools Geapples, without handle
An effective inglessent for reoovering sools whid have bees oropped inso the water. The springs are saiff and will grasp ob bisel of any beavy anticle firmb.

If hasdles afe wo le frimibiod, state leagh, wien ordering. Price of handirs extra.

Ice Raske.

Ice Hooks are masufactured of the best atook, and are heavily steeled, making thern very stiff and urong.

The Peiler or the Pusher can be lest cold to any angle desired:

Boston Pastens have wife Points-i-ikh face-and are most geveralty weed.
New York Pattern have marrew poists. (See illastrations on page 125)
is-foot Mools are most commonly emploged for wee on the russ, in the boves, or in lading wagoas, although in mome localities 9 -foot Hooks ane peeferred

3 and 34 -foot Hooks are ased for paching ike in costracted quarters.
Canal Hooks 6 to 8 fees lone, are for fevding strips or cakes through the caral.
Floating Hools, to to 18 beet long, are sied for foating the large abeets of ice from the fiotd to the casal.

When so length is mentiond hy cuntomers ordering loe Hooks for homae ase if ft. will be sut unless enstomer's previbes orders are remembered to have bees for a differest lengh

Mrigh fer levets. it Ms
Cede Find
Per Bea.
Na, g21. - Switching Hooks, oft. 8 in, D havdle
Oakw $\$ 10.90$
Thin is foe wse when the Swibchrian is on the hoose side of the ran. The Svitchman can Jand of sit, and the relative position of Paller and lwaher requires only a quarter bafs of the hand to shange from one moveunerat to the other.

Car lict Henk.
wrigh er, +A. Cer Mowes per derm, is Ma

No. 523 - Car Hooks, it feet , , Oalwedl 12.25

Made the tame as segular Ise Mools, exorpting that the Pusher serap-ieon extends 18 inches down the handle, 40 streaghlen and peotect the wood foe car or boat use.

Weiatit of y-f. Icing Howis, wood handles, per dovere, fy lhe.

Cable Word
Fur Dus.
No. 5241. - Icing Hooks, wood handles, 5 feet over all . . Obey $\$ 3 \pm 00$
No. 524i.- lcing Hooks, wood handies, st iect over all . . Objoct ar.00
Mo. 5 ayC-loing Hools, pipe handien 5 feet over all . . ONang 2300

These have a square steel splitting ieco or breaker, 6 linches longs in plate of a pusler ifen. The wood handle is inserted its fall sibe isto the sodset gart of the beivy, solid becaker and hook.

The pipe handies ate perferred ly many-
Roth piyles are for breaking up ice cakes whon jinge earl.

Catat Ise Heok.

Weigle of asuubites Caun Hacke, per dives, whe

The Cant Iec Hook is ssed to "edge up" iee when parking inno bousts or barges, and is in faver with some Western jackers.

Iteise Nires.
Cotidio Vleze.
Bowen Patiera Putien, wile Paint,
Weictor, per downs, or line

Imabr View

New Tork Pattern Paller, Narave Pelet,
Wriche per doans mile he

Bentan Pattern Puahet.
Weichi, Der Avern, s lis

Risg.
For 14 hander end innes. Wriyth, of is is is

Rivets, Ceasteriusk Howd.

Rivets, Trass Heal

Codr Wrim Odem Opise Orougr	Fer Doe. 3450 430 コJ5
Orusar	375
$\begin{aligned} & \text { Oretyrig } \\ & \text { Orlit } \end{aligned}$	5.25 35
Orined Orwale Oral	83

toe Hook Handles are made of best selected stocud groml ask - and aft at fine an can be boughe. Send for pricel

So lee bool in pat to a more tevere bot by ice dealers than the Ice Hook. Ouri will shind reasbrable abose on the mun by the inexperienced, and will metet the most critical txactions of the "old hand," who wants perifect temper and peoper shape

Bonten Tanga, 3atit 3asem.

Bontse Tregk
Extre Iollow Hentle.
Rlace. Rilnts, If in wibs.

Pork. Podess Kis. wills.

Bostre Torgr, selid smell handle, 13 in, 44 the for.	Code Wert Porl	Ner Dee $\$ 1300$
Boston Tongr, solid swell hundle, 14 fin , 3 D Be dos	Padrave	1390
Bouson Tongs, solid swell hasdle, ost in. 60 lde doe.	Pagisal	1400
Boroos Tongs soli4 swell handle, 30 in, 44 lta. doc.	Paglat	1500
Bopton Tongs, nolid awell handle, 44 in , 62 lbs doe.	Pueds	1600
Boison Tongs, solid swell hasdle, कo in, 68 lbs dop.	Polltr	17.00
	Pencale	17.50
Besten Estri Toegs, Mollow Hasdle, 344 in , 37 lbs des.	Penir	1800
Honton Fxtra Tongs, Hollow Handle, $364 \mathrm{in}, 44 \mathrm{Ba}$ doc.	Pennic	18.90
Boatoe Exira Tongr, Hollow Handle, as in, to lis dea.	Pirsua	3059
Na s4at-Bomos Special Tong3, Hollow Handle, is in, unpainted	Paradar	1800
Na. 544 - Bostoa Tongo Wood Handle, is in, 90 he dae.	Paragas	21.90
Bostos Tongs, Wood Hanlle, Lil in, 38 lb dos,	Paraprit	2 ± 00
Hoatora Torge, Wood Handle, 16t in, بo the dos.	Parcal	22.90

Delivery Tongs are the sery leaf modelt which experience can produce, and their qualty carnot be eveelled. The poiats, which are of foest sool steel, wre all sled by hasd and carefitly tempered to hold sharp edges and for tong service.

The apon is measared when they are ogen as wide as possille, no allowace beigg made for the haseds.

Bonton Teags, regular grade (painted red), have selich drop-forged, sted swell handles and bowr, and fiva toal stect poists. flostoe Tongs have wiofe, thin points.

Beaton Extra Tongs, Hollow Handles, (painted Hack), have gat-pipe handles I-in. diamster. They are very popilar asd are rapidly taking the ploct of the regular solid husdie tongs. being stiffer and mosh more comfortalle for the hand. Best tool steel is wsed in the bows and points entife.

Bostow Special Tongs have hollow handles of a tirtle larger opering than the Extrs, they are alayys farmibed ampaimed, and are the exact ityle used on delivery wagoas in Boaton and visinky.

The Extra and Special grades are positively the stiflest kind of tongs that can be made, and afe recommended hy tit very decidelly woll who want aloblutely first-elas tonge foe severe ase.

Wood Handle Tongi are made of beat qualify boet ateel.
The Boston Faters of hand tungs, asde is "Solh Hasdle" asd "Hollow Hasdle" atyles, is far more univernally used than any other slape. It catches the ice low on the sides. asd. laving shoft thanks, flaises the cake clear froes the ground, beinging the weight close to the hand. On this account the shape io graduatly superseding other patseras.

Ner Yark Tozga. Abtis Eanalt.
Ked. Kansore Rilens.
Na. 54s. - New York Tongs, solsl swell handle, ral in. gh Dr. doe. New Yerk Toogs, solid swell handle, if in, q? lha doe. New York Tenes, wolid swell handle, os in, 45 Ds boe New York Tonge, solsd awell handle, $44 \mathrm{in}, 92$ Ibo. doe
Na sqoi-- Marhattan Tongn, hollow huedle, tit in, 35 lles doe Manhatian Tocer, hotlow handle, if in, fo the dor Manhatan Toags, hollow handie, to in, it Be dor. Manhattan Tongs, hollow hasder, 34 in , so Be dow.
No. 54g. - Phladelohia Toogh small sice, 14 in. 18 lbs, dos
Philadeloha Tongh medlas sire, 17 it 19 Ilos for
Phisdelghis Toigh large sipe, 23 in, $\$ 4$ low dos.

Philelelyhia Tasgh. Sotit Fandin.
Black. Karres Rolnts

Code Wrand.	Fer Dee.
Pardow	\$1300
Pariser	13.90
Pariel	1400
Park	1600
Pajapari	1500
Pazie	15.90
Pazial	1606
Papture	18.00
Patelia	1500
Patiest	10×0
Pucheray	15.00

New York Tongs have solid swell handles, steel bowi, and narrow sool steel points.
Hellow Handle Manhastan Togen huve the Boston Hollow Handles with short shanks, a modifind patterm of hows, and aride poivis.

New York Tough, when open, do noce drop as low on the cake as the Beston,
Philadelphis Toags have solid swell handles and best tool steel bows and points eatire.

Nev Lemien Tepge
Nodiov Mandle.
Hark. This Reses.

Providence Tanga
T Bandle.
Thas. Thue Poiars.

Car Teage
Tillow Hastle.
mark. Risis, Nis wite.

Milwarke Tagen Sollew Mandin. Thin Polest

No spe-New London Hollow Handle, 13 in, 32 Iln. docs New London Hollow Handle, 44 in, 36 has dor. New Landon Hollowe Hardly, to in, بo has doa
Nas 5an- Providence Tongh, T Handle, made so eeder.
Na. 540t-9 Mijwabee Tough, hollow handle 12 in , black, is Mbs. boe.
Ns. 544 - Car of Corser Tongs, hollow handle no is Car of Corner Toogs, bollow hindie, 12 in. .
New London Tongs, made of bent sool steel, ocmbiar Bonton Hollow Handles with Cincifenati shaped bows, having points without hoele.

Previdence Tongs have T Handies, either of wood or bras as desired.
Car, or Comer, Tongs are used is "carring ioe" by men who grasp ebel calot at opposite comers, and are stoetly made of best boil steel throgklowe.

Milwaulee Tonge afe very popular is Dise eity frows which their mame is derived.

Ciacianats Chain Tonge. thack. This Nies.

Tamas Cify Chain Tange
Buck. Tilim Poles.

No. sza-Cinomati Chyin Teng, $10 \mathrm{in}_{2} 20 \mathrm{Iln}$. dru, Coneinnati Chaim Touks $12 \mathrm{in}_{3}$, at Ilas, dos. Cincienati Cham Traes, is in. as The fos.
No. sgod.-Kassas City Chain Tones, 10 ins, 27 Ins doe Kansha City Clain Tengs ia in, os Br doe Kancas City Chain Tones, 15 ing go Be doe.
No. 531, - Patent Link Tonge, 10 in , is Dre the
 Priest Link Tongs, is in, 30 Bet dow.

Putent Link Toagh
Hack. Tila Poies.

Soene mers of Chait Toust like a pipe hasalle in plast of the when ordered, at the same prices.
The Kanas City atyle is heavier than the Cincimati patiens, and is more geverally ased by the ice handlers who like "shais hooks"

Pancat Liak Tongs are rapilly growing in favor where they are lnown.

Batiale Tonga
 Wrichs ithine

Eastarn EAging-up Tongh
Nut. Sarnow Powna. Wriek, ath

No. ses- Ruffalo Tonks, ta in, wrighe, 28 ltes. dor, Black No. 5554 - Jlaffalo Tonss, 14 in, weight, 32 the, dor, Bock Ne sot - Daflaly Toegs 12 im , weighe, is the soe, palinhen
 17 wanted with Bontom swell hasdles, add for sat
So. g6t. - Fasterm Eiging-tp Tongs, solid humbles, ob it Na.gbti.- Fantrm Fedritg-tp Tongs, hollow hatdles, is in Na. sha - Utal Edging-ap Teens, sold handles, 19 in. . No. s5s - Utah Fifging-ap Tongs, bollos handles, 39 in

Utah EAging-up Tongs.
Nod. Nerrear Roina. Wrighs, a Pr

Cole Word	Pre Dies.
Prrimin	\$1300
Proster	11%
Pivader	1800
Prichase	18.90
Piceic	200
Pierere	1600
Priploar	1800
Pillorim	1600
Pinur	1800

Baffalo Tongs have a apecial, small and martow, solid handle without awelt, adapted to beivg gracped with the fingers wesdernorath the ring imstead of is it.

Figing-up Tones are used by packers whe edge 0 their ice whe stowing.
The traik parvern eanhes the cake on the site and top, and is oovaidered a note handy stole ly seme.

Wricha, ily its.

Deare or Btawing Trage

Red. Poless 3 in wide.
Frigheratich

Market Toage Denlie Falas.

Ret. Recad Pinetis
Weicher, 5 Bm

Cedt Wond	Y
Plowo	\$300
Pievato	37

Market Tengs are petferved where the heavier Hoisting Tongs are not regaired.

Drag or Stowing Tonga afe mull msed for moving ice in the hosses in the swmmer,
The regular paitern has handes which melsure 12 inch betwets eivet and under side of rine.

The anolk in the hanfles of these tonge is of a latge sire and gives an eway grip.

Lewering Teage Single Polat.

Lewerlag Toaga. Doeble Paint,

Cast Winet	Eant
fircler	5800
Pronari	200
Plaris	200
Plaser1	255
Pitek	2)
Fibater	378

Finater

Na. 58o. - Loweriag Tongs, Single Poist, z-inch span
No. $5 \% 2$ - Loweriag Tongs, Single Peinc, 17 -inch span
No. 572 -Lowtring Tongs. Sisgle Poitt Lijinoh span
No. S4--Lowering Tomgs, Doulle Point 24 -isch span
No. $375-$ lowering Tong, Dowlle Point, 17 -inch spat
Lowering Tonge are designed for work where only a small space owerbesd eviste
They will sold Sraly if the proper the is selocted, and are light wo batale.
Uie the sesalles span you dar. The more opes the arits the tighter the grip.
For $\quad 1$-inch eas ice, wise the 14 -ind sibe! for 14 inch, the 17 -inch sive.

Bontse Holatisy Tasge. Afantahle Clew. Wrick all Ma

Banten Ifplating Tenge Sitit Clam.
Weight ay lbs.

Ceste Wiors	Eerl
Playlal	\$600
Piesty	56

Piate Ice Tanga
Weipht, by Be .
Ceat Went Plesuast Pled

Eert $\$ 500$ 1560

No gilc - Nrw York Moisting Tongn Solid Claw, so-inch Na. goi - Plant lee Tongh, very leavg, 33-inch span

Our Adjastable Claws are foeged from steel, and are of skeleton shape, gising a sare grip on uneven surlaces.

Hease Iet Ax.

Axed are beavily ateeled, findly sempered, and are true to their tespective pasterms.
Our styles art in sufficiest variecy to cever the demands of mont usens, bat where still Gfferent ones are wanted, we are pleased to make then to puttern

Langh of blabe it manams from leaile of handle te efler of thele.

The Hoase Ice $A x$ is uned for cutting aroand cakes in the house inutead of No. as8 Bar Chisel or Na po Summer Rar, and is particularly afapted bo this work where the ioe is packend on edge.

Bobles Iot Ax.

Weicher cemplene, 4 her; handle, ut ha; Blele.

Chirage Ise Ax,

ix a/fila, reand eden.

Code Frend	Fer Doa,
Patit	\$9000
PopNim	made
Perter	2000
Рани*	2000

Now Yark Median Ioe Ax, Jin.
 blaile. 2% it 3 lsa Nowere tilge.

Srw Yeik Heavy Iee Ax, st is.
 blale. NA s plalin- syoser wice.

The New York Ax has a very wide bit, which, agerlher will the extrent weigh ewases, in the ogition of many, a taraigle cut.

Philadelphia Square Head Iot Ax

Philadrlabia Hook Ine Ax.

Mrewier Aves male to erler.

Failadelphia Hook Ise Axes made with 2 d -in. koob handles also in stock. The No. 615 Southein Ax, bavieg azin handle, is umatly accepable in place of Phiadelphia Hook Axes, with al-in. handles, as the principal difleretce is merely that the Southerit Ax has Mlade af in. wide instead of ail in.

Sevthern Ax, Hesry.

Rache Mien Wrichl JN Ihe.
Hawtis, as is
Btale, aly in wide.

Seuthers Ax, Lighe.

Rivent Eape.
Weighe aN low
|lanhle, at lis.
Bladr, aK lan mide.

Sonthern Ratelbt, Metium.

> Sewart Eife. Weighte aly Be Mandle, is in Finde, vy in wide.

Na. 6 rs - Southem Axes, Heavy, round eder, 22 -in Mandle	Cobe Went Prestest	$\begin{aligned} & \text { Fer Des. } \\ & \$ 1800 \end{aligned}$
Na. 616 - Southem Axer, Light, round edgr, 18 -is, has	Preat	∞
No. 6xa-Southern Hatchets, Medius, square edee, so-in, handle	Pride	600

Spathers Hatchet, Mediam.

Weighn, aly lise
Mantit, off ins
Malo. in lia nids.

Wankington Eatebel.

Svathere Hatebet, Light.
Syaare ficye
Fricht. Ba .
Fandion, 46 in
Bising is vile.

Cule Wers	Fur Den
Fricate	\$16ice
Probale	1500
Prowind	1600
Prasile	1600
Prafe	1500

We wet the utmont care is making all anes and hatchets to lave them meet the bighes iteal of the expert driver.

Weiqhes of all ive sues imelade idente.

5posting Awl, Resst Hasdle.

Splittivg Avi, Chivel Randie.

Splartiog AN. Pear Hasdle.

Ite Awl Shewth.
Male of litavy itwher.

Clipper, Weod liasdle.
Al|l. x gich Nate.

Regular Blades, $6 \times$ Nin. Larger ases of i of In-in, steel to order.

The Brass Handle Awls (thla, steel) weight It pounds each and the handle in the same shape as our Na. 6ya.

Blades are mole of the leat sweel, finely tempered and are ninkel plated.

If sedered to be tent ty mail, add 3 cents each for portige.

Chipper, Ivas Haselin.
4in, sin Maln.
Code'Ey went Rer Des. Na. 635-Ice Clippers, Woot Mandle Propete $\$ 1000$
Na. 6pb. - Iee Chippers, Mallealle Iron Handle
Our Ice Chippers are as fre at it in ponville to muke and are furninhed with either wood of malleable iroa hadien.

Iof Itoune Save,

Wricher, 4This Irsigib of Nadt, en is.
No. 6 jR - Ice Heuse Saws -
Code Wert
Bech
Prolocol
\$2.50
This is a usefat article where ice-Wlocks ace packed closely and cannot be separated by chisel withoot breakage.

Sand Sarw, Guard Irve-Handle, 30 in.

Gla Her Wood-Enollo Hesil Saws mem sheptll lantio.)

Fand Sav, Oval Iroa-Hantle, ge in.

No. 642 - Hand tie saws, Oral trot-Hande 30 is P Pual tix
No. 6qat-Iland lee Sawh, Oval Iroe-Handle, yo in . . Pavid l.at
The goind Hasd Saw is the assal ice wagon lengoth, and when no length is given in order, we will tend that tise.

The iron hasdles ased on cur Hand Saws are made of best malleable iron.

Ie Clipaver of lienck.
Wright, glsis langit of hlade will

These are med by some on wagons in place of the ax
The end ef the blabe is sharpened for use in shaving or scraping the ice.

Dech $\$ 1.23$ 1.25 Racrown Rack

Na. $600 \mathrm{C}-4$ Poiat Shwers, Ring Pipe Hdle, beveled both siles	Racrown
Na. GgpD - 4-Poent Shavers, Ring Ppe Hde., beveled oet soile only	Rack

s-Paint Shaver, Koob Pipe Ramile.

Na. Gq, F - 5-Point Shavers, Knob Pipe HAle, beveled both sides, Radiate

Eech
$\$ 200$
260

$$
\begin{aligned}
& \text { 5-Folat Slaver, Riag Pipe Bandle. }
\end{aligned}
$$

4 Polat Shyver, Leng Hastle Smaller than Na. ©pi-

Cbicage 4-Paint Shaver, Shart D Handle.

Cout Weal
Fact $\$ 3.35$

5-Poiat Sbaver, Leng Randic.

S-Paint Shaver, D Handle.

Cote Werd
Ralk
Na. 6ss - 5-Point Shavers, D Hdle Rerital

T-Paint Shaver, Lazg Hasdle.

Na. 6gt -7 .Poins Slavers, Long Hdle. Recail

7 -Poiat Shavet, D Handle.

Fine Toeth Slacher, Knob Ramild.

Breakers, Last Hasdle.

Breakers, D Jandle.

The Iireakers should not be need as a chisel for uplitting caloes of ice. The tises are shaped and set for lreaking off coarse lemps frotn the sides of the cake, or for scaling off faer pleces, if desired. They are wery popular in fah marksta.

Shavers and Shasken ate used to shave ice imto fise pieces wlen delivered by the basket for saloon of restaurant use, and for varions ocher parpones.

Shaver teeth are beveled on toe side only, culent described othersiie.
The 4 point thavers are it noot eommon ase for Atlivery wagona.
The 5 -point Shavers are adapond for larger operations is fah markets and iet ereatt fuctorics:

Shasers can be "gurmend got * atoer the soeth become stant foom repeabed sling so that the testh will be as long and alies int when Ber.

The ateel used in all oer Shavers and Shushers is especially made for the perpose, and is of extra quality. The points mill hold a fine odge.

Pleuse le parniculer to sasu exset atple by esmber, whem andering.
When onder dors nat mendion kind of Shetort or Brosker, kong-handled atyle feill to spet

Pocket Ise Aproa.
Onginal wiple.

Pecket Ion Apeas.
Neت ayple.

Cedr Wea	Eauls
Remale	\$300
Remote	300

The original style podet ice apeon has bens in use foe mary yeans. This agron is cut atraght acroen the mop, and in held in proper position by a light harness.

The new style pooket apron in cut high in the seck and extends over the shouldern.
This stgle is enoch pacterred by some, sapecially by those who carry ice higher ap on the shoalders, as it affords more prowection than the oll spile. Both designs are very popular.

Pocket Ice Aprons are nade foe these who carry hee on the back. When delivery men get accuitered to this nethod they never retarn os the "hegeise" plan.

By les ase the goof graces of the housewife are secated, for no dripping reach the flow.

Ptala Rubber Aptatas.

Phain Aprees are woes in froet is the same masoer as sedinary aprona.

Fipoden Sele Sheen, Thala,

Weedra Sole Shors, Shes.

No. Ggat - Shoeh Fain, Siaes of 7,8 a 10, 11, 18

Cole Wres	Per Fuly
Kendred	$\$ 1.75$
Resorl	2.00

Klesighe Ive Crevpers.

Ihatep Iet Cretperis
Cole W-al
Per Pair

Na. 6gs-Instep Ier Crecpers . . . Roakery
.25
Syecial prioes by the doven pairs. Either style can be wien ot overshoes.

Fatest Dep Crepper. Style A.

Pateat Ice Creeper. Style B.

Per Deal.
$\$$ \$.10

No oether crecpers on the market can oompare sith these for comfort. They eas be wora on overshoes or rublert boots.

The backs are of leather and will not chafe the shoe, and are light and durable.

Ireaclad. Wilyth, is the

Deplex.

Straight,

Ajar.

magel

Steed King.

The "Iroselad" has a malleable iron jacker, and is a relialle sotle boe a moderate cous.
The "Drplex " has two dial faces and a wrouglt ifte jacket
The "Straipht" Scale is popelar where ige is weighed hy I and a poend marke.
The "Ajax has doctle springs, which ane woand in opposite directions, raking it Mrong, acourate asd durable. The indicator cannot rub asd the face plate caanot beconst battered.

The "Mognt" needs no insroduction. It is a high grade scale laving doulle speingn wound in opposint fifoctibes. The patent isteribe slidiag link prevents overstraising of the sprisges.

The "Steel Kirgen" is a well-known and popellar scale.

[^4]

Q-W Mefrigeratar Bipcke. Ope Single and Ose Deable.
Distusen berwens hooks ng is Weight per puln, IV ins.

6-W Betrigerstar Blocka. Trop Deable.
 Wisghe per pair, av line.

Coll Wiond	Ter Ther
Regret	\$800
m	

Our mex style refriperasor Mocki art peovided with strap becket imaring adety is suppoct. This may be removed by wing mat without use of wrench. Rollet bearitges redset friction 50 a minomem and the shortress of the Wockes makes it possille bo hoin the load close up snder the oetling. the i-inch diameter nope.

Weed Catzing Saw,

(Showing Section af idew win Siaker actaphel.)

This is as extremely effective device for outting moods and ofher endergrowth froin bodies of waver from which ice is harvested, and is the beat method yet devised for the purpose

The operation of the saw is simple, and is samaliy done by twe persons.
To gain every adrantage, the first or young growlh of weeds shoeld be eat away, followed ly a seoond cutting in the warly Fall: thas leaviag a clear body of water from which clean ice may be cet.

No. jopi-Weed Saw (aww pely) ang length

Cede Wiont Reirat	Ner Fart $\$ 150$
	Fer thet
Rewark	\$500

As the sam muat be tuak to the boesom, we send with ewch orker the necessary sinkern, clampo, etc, enleis inueructed otherwise.

Send for illustrated and deseriptive circalar.

Self-Labricstiag Upper Gin.
Welake of ariac wist, is lis.

These Gins are metaline beabed and can be ran at gaick apeod withoot the we of oil. They are subatamtial, always teady for ase, and will wear many tietes longer than whetls with roller bearingh.

Self-Lubrienting Sheave Whetl.
Walghe ef unta, 6 lice Bole for Min jen

Anti-Frictiva Sheave Wherl.
Whiglo, iN likes mia. diaseren wis, that.
Sturefer N in pin

Cele Wond	Each
Sonela	$\$ 2.25$
Song	175
Spar	2.50
Spifer	3.00
Spori	3.75

The unal size is ta-isch.

甼ater or Wagon Leatige Reas.

Regular widlh ir in. Suitalle for 22 -in ike or under.
Exira width 16 in. SulatMe for gain. iee or under.
These Steel Ramt ate usefal in the howes for lowding wagoos, and are made with flipers on one end to camse the ice to slide on ravily.

Car Bua

Cabe Wiad
Each
No. 722 - Car Runs, 7 feet, width $12 \mathrm{in} . . \quad . \quad . \quad . \quad$. Tadpale $\$ 12.50$

Regular width ia in Solitable for az-in. ice or under.
Extra width 16 in. Seitable for 3 asin ike or under.
Thin style is used for lowting cars and has fippers on the selivery as well at on the receiving end.

4-Siat I-Iran Skid, sa Feet.

Cede ${ }_{\text {Fent }}$	Eets
Talrat	\$500
Tallyhe	590
Tamper	6.25
Teke	7.35
Trapat	8.25
Tefinale	590
Teseple	600
Truder	700
Tind	8.35
Tokes	9.90

T-Iron Skids are growing in fator foe wee in houses.
This patters is made entirely of T-irome
These skids made with emier lars of isverted U -iron to order,
The perviling y-ilat twids are 17 indes wide, asd the 4 -slat skids are 22 isches wide. These are, therefore, our stock widtha. Sopecial sims made to order,

Steel Circle Ban.

Conestrastovi whoily of obeel, they are light anal stroseg
In ondering. abwase give assife merasancmente of your nues and state whecher your comencting ifuts are oes the bop of the twemom of goar nim sules

Wooden Ean, with Sides, in Feet.

Woobler Rums ane made of spruee, firiel with horks and eqes, amply inonet, and palated Soock n wilh. 2 B iachet incile, dear.

Weedra Flat Skid, 44 Feet,

The two oestide rra-atrips are inoned with posent V -iron, with dreved ends, and the

The cortside fat wings slant ouswam and and in puting off.

[^5]

Ban Svitch.
Na. 74h.-Run Swibches for rass ob incles or usder. . . Treaver \$1000

Switches are growing in fovor as a laber-saving device oe the oatsibe fan or adjestable gallery when alling bosses.

Made with an tye to be wed for a light comater-weight, if devired.
These switches are sometimes uned on inide rumi-one ahrad of the other, to switch either to the fight of the lett. Complete rans formiahed upoe seder.

In ordering, always give ixside measprement of rums

Iev Rus Ireas.

No. 790 - Ken Iron, Jrilled, to feet, sgaare ends - . . . Tricol \$aob ia feet, spaare ends $\quad . \quad . \quad$ Trig
II feet, maare ends 14 feet, mpare ends : \quad : \quad Tricas
io feet spaare ends : Trina! ob
This V-pattem Iet Rus troes is largely used. The sharp aurface slightly groowes the ioe as it patses over it.

Halt Oval Iras.

Na 354-Half Oval Irone $1 \times 1 \mathrm{in}$,	Hait Oval Imas. Weipht per fic, is.				*		Cole Wien Trishet	Few FL Soob
	to feet		.	\square		*		
	sa feet	+	,	$+$,	*	Tris	06
	44 feet		,	-	,	*	Triped	ob
	36 feet		,	-	.	.	Trowlicy	06
								Per har
Exifn charge net, for dressing ends	± 4		1	*	,	-	Trosper	085

This iron is med on rams made with siden, and on Flat Wooden Skids for the cenier bar.

Scratrier.

Thin Aevice is in une by a mamber of our costomen and can be applied to any gravity run, as it in a movt accorate way of smbbing ice under the varying conditions that exist on funs which are not provided with Corverying Machinery.

It is not uncommon to have ony near wach house door. Several of three Scratcheri can be combised to be workod from one lever. Scravchere can waily be removed from one fared gallery to another while the dump is beving changed at the Khrvarop,

In ordering. give slae of side stringers, arrangerment and dimensions of slats and distance betepen stringers.

Caip Shigh.

> Na . To O - Chip Sleigh
> Trainel
> $\$ 7500$

This type of alrigh is the bent, and is very strong.
The pan is of heasy shaped sleel and supporsed on three Tishaped steel funnern.
Waed foe gathering no ice delria in the home asd dansping it fout of the doorway.
Where howes are large and the ice reguifes moeh eveting aroend, it in of great cosvenience.

GIFFORD-WOOD CO.

Wagsa Ice Crusher.
For ithe nde of licp-wagots
No. M g.-Little Gant toe Crusher
The Wagon loe Crusher in one of the grestest time and bhor-saving deriers. As mach ise can be broken up in ose minute as by hand in fiftoen minutes.
(WVite for romplite illuitrated ratalag)

Creasey Iet Brasier.
Capentr, et tas per hest, Solpoline moybt, jus lis.

Creasey Ice Brtalaet.

For Hasd er Fuwer. Shippleg weigho, wiolis.

Eala
$\$ 1090$ to 5 yas.00
Creaseys are distinguisted by the ane of sharp, pointed. round piches, which slatter the ige, instead of aftempting so cut, chip, serape or crash it. These picks are so attached to the drust thut they to not become loose in servict, while at the sume tine they can be removed for sharponing by the mere tap of a hammer. Other valable featores are soff, atrong frimes, large shafts and bulbitted bearings, solid drums, heavy fif wheels, removable and adjentable combe, giving six sites of lice, and the ability so deliver ice front of rear, as desired.
(Write for comptete thatrated ratalob)

REPAIRING ICE TOOLS

Alwage ated repairs of minter moly is the rammer, and awid ther fall rach of avelt at fartary asd posplate freight delays.

All repairs should be semt to factory, at Hedoos, N. Y.
We repair all kinds of Jce Toels as fowest prices. If pays the user to get his repsiring done at the factery intead of allowing the loxal bleckumith to do it

An estimabe will be gives befoer undertaking the work, when desired.
Our Ice Plows and Markers, when new, are so forged that the cutting points of the teeth lave the proper "giuge" of entting widh that each siesd implemests should have the shallow plows cutting slightly wider growes than the deep plown.

The Sasadand Scale of gradation is shows by the following diagram:

 Mahersalat Moss.

Plowi should therefote, always be ran in the pooper onder of their depths, so at to refoce side-friction of be teeth mo a niximm

Ebeh plow abo, is oeder to fellow itself with greatest poisille asie, in forged to have a slight decrease ia catting with as the tooth is woen shorter by repeated sharpenings.

Therefore, users of Marbers and Plows sbonld hwe their machises fe-forged from time bo time, to koep them to their proper curting widhe, and to have them properly retespered for good service.

Re-forging inchodes fe-tempering, outting oet bottoms anew and a thorough te-finishing and painting of the Harker or Plow, making it the a $\begin{aligned} & \text { tew one exopting in its orighal }\end{aligned}$ (epeh. It is alwagi a paying investromt.

New sets of leeth in Marken or Plows which are worn too ahallow to pay for reforging, will make thes eyual to eew oect Prices for insenting bew sets of marker of plow Beeth, with clearing-tooth in plown, making then look like new, fied and painted, ready for use, will be sest, when so reqnested, on receipt ef description of plows, of after the goode have been received hy un.

Undrilled sets of seeth for Markers and Plows wit have to be sem when Markers and Flows meeling bew teeth ate not sent to til. As the boikoles in the new teeth muat be exactly accurate so that they will be solisly betid, we cannot drill them suffienenty perfect miens bey are clamped, before the drilling is dobe, imso the identical beams they are to secupr.

When ordered to send sets of teeth usdriltus, we do se at a reboction of \$ase per set from prices for the complete work, bat castomers are always better satisfed to send the heams at least, berre, and the complete Plow if practicable.

Always seed the Guide witb the Marker or Plow, that it mavy le fiteed aceurately.

Broken toetb in Markers of Ploss can be replaced with mew owes. Sesd the sachise to our tactory, if possible, as we can pat in the new socelh of terth tolidly, and oan leave the Plow periectly true, warranted to work. When this is not practicable, take out the beeken parts of the tooth or teeth, and either espress them to uk, or mail us an eract diagran of the tooth ewtirg, including the bole-boles, made on thick paper, and we will rebarn a tooth to fit.
(tf paper patters is sen, \square give the wifth of cat by cutting a motch in a cand, which fits the points of the soch of the Plown.)

Gumetingrout is done by us by very dec pusching, and always pays the serer.
Bumbd Plows. Markers, Clisels, Bafs, Tongs, Axes ete, can uwally be made as gocd at ficw ly morking ovet and by supplying the necessary sew parts.

Filing, of sharpering, done at loweit prices.
Chisels, Bars and Axes made as good as new by pe-ntecling of making new ends.
Ice Hoolas can be overhauled, and, by amplying mew Paflers, Shovern, or Handles, as seedrd, can be made into good hooks at les than half the price of new ones.

Ice Tongs can be re-poinbed and revtored to good condition.
tee Shavers shoeld have their seeth ground when ioo short for rapid work.

Mark All Shipments of Goods for Repairs:

Giffordtloodlow

Hadron. N. Y.

Be sure that mame of shipper in on every package.
When goode are shipped motify Gifford-Wood Con, and send hats of lading oe railroad rectipe

Shipping tags, properly addresset, witl be sent upon reguest.

SECOND-HAND ICE TOOLS

We agually have a good isseetment of Second-Nand Markers, Plows, Field Planers, Hand Plows and small tools, which come isto our hands by way of trade, will of which we make over belore selling. We warrant them in good cosdition.

Also, some excellent Elevator Planers taken in exchange. These bargaisi should be severed early, for such goods sell readily-

Send for list of Second-Hasd Ice Teols.

SUGGESTIONS

Os Selectise a Set of leo-Catting Twals.

We give below four npecimes lists of sools, with briet headings, which, as a mpplement to our calalog deweriptions, nay serve at a basis mon which mex nmas can form an estimate ef their meeds for their individual situations.

The lists are not large esough for high nabes of spebd, of for filing a large mamber of rooms simultancously.

We asume that bointing will be done by eige of by elevating machisery. Where these mans are not ermploged, Grapples and Gin Wheele will noed to be added.

Set Kan. 1
Seloable for harvening toeto voe iomen int ler

Set Ns. 3

verspin, thide
OVNa, is ote iol if loe la thener.

it ice coet it ilf or wein!

: N/s. 4117 fl 5 swn

n Ka pa I Ine Marken

- Na ph Therer Sikinet 10 Ha ges Sosoe Neri he hertery
 5 dan. Na ise the. lice Hpois

* Nes at inar Chiser.
i Ka. pror Shevers or Nes and4 Fleor Listion:

t Na ola Natill flar.

1 Kh sas Brevt Shenet! TOr Ne. ,yys Sowep Set in herier? Kibe Ne sin ay N . ter Hiels

TOH Hia lish Nh. sfy brae Tresel)

Set Na. 3

 is to le initirits !
Ya, in Perifcies loe Celolivator.

- Na, alt Mas sunger

 impselion ant to he rell
gOy Sa j30 Marser mist So. X4
 Misinal.

Set Dis. 4

\& Xe ape ajell Isreke Eivalar Pansery
, We ate Merfoctlas Culbiraser.

wifl the spenmary Ns, Nap
yev ewtu fabe ho marn the seowend filintsint.
dif aqia. spies are tif be ond, Ey.
frariva Cinders as sta is rasmet the lisect)

Na irp selat Mow
phand to iset dues wiverers.)

* Na, alt ribat Mante ha/h
© Kas sat Kierarer Forks.
i Yis on Sontip Xel.
i No. mut Arve Shovele.
i Kis. y
i No ver Mesiore.

INis in moned fieng. or Sia gls
Drec Tuegs it traded. I

a Na, sea Sotried Forks
4 Na at calier Rars
* Ka ail Far CEsale.
 Pieer Liveiert

 as shappes li the ereates and hevvy anow may ho enollod
 oft reel is what soavi, ant foot what dan be craminnt in.

DIRECTIONS FOR FILING

lue Plaws and Iet Markes Havisy Solid Toeth.

Difentration Na. 1.

IIlestratien Nas.

 sliperisg a nowe ewer A. Irpending oe then hind heal Cibo regulane the votili cet.

Illuatration $\mathrm{Na}_{9} 3$

 plow to vet.

 as latel (M).

 It seab a way that they will be cerned dowewank. and thes "wke hold."

 and this will cesee the plow so har bouns.

ICE TOOLS

Adres Page.Apeoes, Rabber139
Augers 133
Aws, Jet 134
Axes and Hatebets. 131-383
Ilars ing-4x
BDoeks 142. 143
Preakers. Mund and Power 48
Brushes. Plater 95
Hurned Plows. ele 840
Cave of Plows 146.150
Cases for Phows 16
Chippers. Hand Iot 118
Chiop sleighs 847
Cluisels $15 y-631$
Cleavers, De 135
Code for Telegrapling 61
Cretpers 540
Crushers. Nand alld Power 148
Centivators. Field 66
Dairymen's 17oss 105 $1+1$
Depth Gauge bss
Directicns for Wine 5t
tolevatoe Fors 181
Extersion Guifes 10j. 130
Piles Ist
Piling tee Plows 54
Ploor Shavers 137. 118
Gina, Hoisting F45
© Capples isi
Grappie for Lost Tocle 18)
tirocre Clearer 146
Goudes, Marker tey
(Fusdey, IVer 109. 168
Hand Mows. 313
Handle Geards for Plows and Markers. 398
Hatehets and Axes 181-133
Howting Gins 183
Hookn, lce. $135-325$
Ice Secopa 1 1.
loe King FIown. 100, 301
Ice Tool Piden ID2
Levelers, Poor 117
Line Marker. 121
Marketh, Periection ED3
Marken. Regular ED5
Measuring Rod 12:
Net. Scoop 181
Page.
Page. Perlection Cultivaton 6
Perfection Piown and Markern 104
Planer Brushes 45
Planer Meadurtments.
55
55
Planers, Elevator $9 \mathrm{a}-\mathrm{y}$
Planern, Field 95, 7T
Planeri, Poor 137, 118
Paners, Street 96
Plows. Deseriptice 102, 149
Prown. Hind 1 11
Pows, Restular 1q5-110
Refrigerator Blocka: 142
Repatiring Ice Toola 149.150
Ropes for Ftow 111
Run Iron 146
Runnern for Phows 193
Runs ans skid. 44-146
Suns, Cresicnt 113
Sawn. Field 111
Saws. Hast 1.35
Sans. Weed Cutting 142
Scales. Iee 141
Se00p Net. 121
Sooogs. We 123
Seratichers 347
Scrapens, Snow -98,99
Seeved-Hasd Tocla 190
Shargenitg loe Fioms 158
Shaven. Ife 76-133
Shavers. Floor 17,118
Skenths for $\mathrm{A}=1 \mathrm{~s}$ 13
soles.ev 143
Stippine Directions 190
sones. Woolen Sole. 140
Siovels. sinve 13
Skids and Ruts $144-145$
Soeipls, Chip 147
Sisow straper 78, 99
Street leveler po
kivegestions of Ordering 151
Swischers Run. 146
Telegraph Cole pit
Tongs liand and Hoisting (7)6-1)
Towing Hooks 17
Ulon of Plows 49
Whecls, Sheave 145
Weed Cutting Sow 142
,

Digitized by GOOgle

31951000942542 G

[^0]:

[^1]:

[^2]:

[^3]:

 Cquspolvena (Xa, yeli are wirad on page nep.

[^4]: Iepaling nalesiat manonable pribes.

[^5]: No. 734 - Hooks and Eyes ior Ko. 230 Kune (wnght per pair, it then) Trary! $\$ 0.99$
 Threc are for conpligg luss sogerther stich lave sides.

